小學奧數(shù)解題技巧大全60講|第一講《觀察法》在解答數(shù)學題時,第一步是觀察。觀察是基礎,是發(fā)現(xiàn)問題、解決問題的首要步驟。小學數(shù)學教材,特別重視培養(yǎng)觀察力,把培養(yǎng)觀察力作為開發(fā)與培養(yǎng)學生智力的第一步。 觀察法,是通過觀察題目中數(shù)字的變化規(guī)律及位置特點,條件與結論之間的關系,題目的結構特點及圖形的特征,從而發(fā)現(xiàn)題目中的數(shù)量關系,把題目解答出來的一種解題方法。 觀察要有次序,要看得仔細、看得真切,在觀察中要動腦,要想出道理、找出規(guī)律。
*例1(適于一年級程度)此題是九年義務教育六年制小學教科書數(shù)學第二冊,第11頁中的一道思考題。 書中除圖1-1的圖形外沒有文字說明。這道題旨在引導兒童觀察、思考,初步培養(yǎng)他們的觀察能力。這時兒童已經(jīng)學過20以內(nèi)的加減法,基于他們已有的知識,能夠判斷本題的意思是:在右邊大正方形內(nèi)的小方格中填入數(shù)字后,使大正方形中的每一橫行,每一豎列,以及兩條對角線上三個數(shù)字的和,都等于左邊小正方形中的數(shù)字18。實質(zhì)上,這是一種幻方,或者說是一種方陣。 解:現(xiàn)在通過觀察、思考,看小方格中應填入什么數(shù)字。從橫中行10+6+□=18會想到,18-10-6=2,在橫中行右面的小方格中應填入2(圖1-2)。 從豎右列7+2+□=18(圖1-2)會想到,18-7-2=9,在豎右列下面的小方格中應填入9(圖1-3)。
從正方形對角線上的9+6+□=18(圖1-3)會想到,18-9-6=3,在大正方形左上角的小方格中應填入3(圖1-4)。 從正方形對角線上的7+6+□=18(圖1-3)會想到,18-7-6=5,在大正方形左下角的小方格中應填入5(圖1-4)。
從橫上行3+□+7=18(圖1-4)會想到,18-3-7=8,在橫上行中間的小方格中應填入8(圖1-5)。 又從橫下行5+□+9=18(圖1-4)會想到,18-5-9=4,在橫下行中間的小方格中應填入4(圖1-5)。 圖1-5是填完數(shù)字后的幻方。
例2 看每一行的前三個數(shù),想一想接下去應該填什么數(shù)。(適于二年級程度) 6、16、26、____、____、____、____。 9、18、27、____、____、____、____。 80、73、66、____、____、____、____。 解:觀察6、16、26這三個數(shù)可發(fā)現(xiàn),6、16、26的排列規(guī)律是:16比6大10,26比16大10,即后面的每一個數(shù)都比它前面的那個數(shù)大10。 觀察9、18、27這三個數(shù)可發(fā)現(xiàn),9、18、27的排列規(guī)律是:18比9大9,27比18大9,即后面的每一個數(shù)都比它前面的那個數(shù)大9。 觀察80、73、66這三個數(shù)可發(fā)現(xiàn),80、73、66的排列規(guī)律是:73比80小7,66比73小7,即后面的每一個數(shù)都比它前面的那個數(shù)小7。 這樣可得到本題的答案是: 6、16、26、36、46、56、66。 9、18、27、36、45、54、63。 80、73、66、59、52、45、38。
例3 將1~9這九個數(shù)字填入(圖1-6)的方框中,使圖中所有的不等號均成立。(適于三年級程度) 解:仔細觀察圖中不等號及方框的排列規(guī)律可發(fā)現(xiàn):只有中心的那個方框中的數(shù)小于周圍的四個數(shù),看來在中心的方框中應填入最小的數(shù)1。再看它周圍的方框和不等號,只有左下角的那個方框中的數(shù)大于相鄰的兩個方框中的數(shù),其它方框中的數(shù)都是一個比一個大,而且方框中的數(shù)是按順時針方向排列越來越小。 所以,在左下角的那個方框中應填9,在它右鄰的方框中應填2,在2右面的方框中填3,在3上面的方框中填4,以后依次填5、6、7、8。 圖1-7是填完數(shù)字的圖形。
例4 從一個長方形上剪去一個角后,它還剩下幾個角?(適于三年級程度) 解:此題不少學生不加思考就回答:"一個長方形有四個角,剪去一個角剩下三個角。" 我們認真觀察一下,從一個長方形的紙上剪去一個角,都怎么剪?都是什么情況? (1)從一個角的頂點向?qū)堑捻旤c剪去一個角,剩下三個角(圖1-8)。 (2)從一個角的頂點向?qū)吷先我庖稽c剪去一個角,剩下四個角(圖1-9)。 (3)從一個邊上任意一點向鄰邊上任意一點剪去一個角,
剩下五個角(圖1-10)。
例5 甲、乙兩個人面對面地坐著,兩個人中間放著一個三位數(shù)。這個三位數(shù)的每個數(shù)字都相同,并且兩人中一個人看到的這個數(shù)比另一個人看到的這個數(shù)大一半,這個數(shù)是多少?(適于三年級程度) 解:首先要確定這個三位數(shù)一定是用阿拉伯數(shù)字表示的,不然就沒法考慮了。 甲看到的數(shù)與乙看到的數(shù)不同,這就是說,這個三位數(shù)正看、倒看都表示數(shù)。在阿拉伯數(shù)字中,只有0、1、6、8、9這五個數(shù)字正看、倒看都表示數(shù)。 這個三位數(shù)在正看、倒看時,表示的數(shù)值不同,顯然這個三位數(shù)不能是000,也不能是111和888,只可能是666或999。 如果這個數(shù)是666,當其中一個人看到的是666時,另一個人看到的一定是999,999-666=333,333正好是666的一半。所以這個數(shù)是666,也可以是999。
*例6 1966、1976、1986、1996、2006這五個數(shù)的總和是多少?(適于三年級程度) 解:這道題可以有多種解法,把五個數(shù)直接相加,雖然可以求出正確答案,但因數(shù)字大,計算起來容易出錯。 如果仔細觀察這五個數(shù)可發(fā)現(xiàn),第一個數(shù)是1966,第二個數(shù)比它大10,第三個數(shù)比它大20,第四個數(shù)比它大30,第五個數(shù)比它大40。因此,這道題可以用下面的方法計算: 1966+1976+1986+1996+2006 =1966×5+10×(1+2+3+4) =9830+100 =9930 這五個數(shù)還有另一個特點:中間的數(shù)是1986,第一個數(shù)1966比中間的數(shù)1986小20,最后一個數(shù)2006比中間的數(shù)1986大20,1966和2006這兩個數(shù)的平均數(shù)是1986。1976和1996的平均數(shù)也是1986。這樣,中間的數(shù)1986是這五個數(shù)的平均數(shù)。所以,這道題還可以用下面的方法計算: 1966+1976+1986+1996+2006 =1986×5 =9930
例7 你能從400÷25=(400×4)÷(25×4)=400×4÷100=16中得到啟發(fā),很快算出(1)600÷25(2)900÷25(3)1400÷25(4)1800÷25(5)7250÷25的得數(shù)嗎?(適于四年級程度) 解:我們仔細觀察一下算式: 400÷25=(400×4)÷(25×4)=400×4÷100=16 不難看出,原來的被除數(shù)和除數(shù)都乘以4,目的是將除數(shù)變成1后面帶有0的整百數(shù)。這樣做的根據(jù)是"被除數(shù)和除數(shù)都乘以一個相同的數(shù)(零除外),商不變"。 進行這種變化的好處就是當除數(shù)變成了1后面帶有0的整百數(shù)以后,就可以很快求出商。按照這個規(guī)律,可迅速算出下列除法的商。 (1)600÷25 (2)900÷25 =(600×4)÷(25×4) =(900×4)÷(25×4) =600×4÷100 =900×4÷100 =24 =36 (3)1400÷25 (4)1800÷25 =(1400×4)÷(25×4) =(1800×4)÷(25×4) =1400×4÷100 =1800×4÷100 =56 =72 (5)7250÷25 =(7250×4)÷(25×4) =29000÷100 =290
*例8 把1~1000的數(shù)字如圖1-11那樣排列,再如圖中那樣用一個長方形框框出六個數(shù),這六個數(shù)的和是87。如果用同樣的方法(橫著三個數(shù),豎著兩個數(shù))框出的六個數(shù)的和是837,這六個數(shù)都是多少?(適于五年級程度) 解:(1)觀察框內(nèi)的六個數(shù)可知:第二個數(shù)比第一個數(shù)大1,第三個數(shù)比第一個數(shù)大2,第四個數(shù)比第一個數(shù)大7,第五個數(shù)比第一個數(shù)大8,第六個數(shù)比第一個數(shù)大9。 假定不知道這幾個數(shù),而知道上面觀察的結果,以及框內(nèi)六個數(shù)的和是87,要求出這幾個數(shù),就要先求出六個數(shù)中的第一個數(shù):
(87-1-2-7-8-9)÷6 =60÷6 =10 求出第一個數(shù)是10,往下的各數(shù)也就不難求了。 因為用同樣的方法框出的六個數(shù)之和是837,這六個數(shù)之中后面的五個數(shù)也一定分別比第一個數(shù)大1、2、7、8、9,所以,這六個數(shù)中的第一個數(shù)是: (837-1-2-7-8-9)÷6 =810÷6 =135 第二個數(shù)是:135+1=136 第三個數(shù)是:135+2=137 第四個數(shù)是:135+7=142 第五個數(shù)是:135+8=143 第六個數(shù)是:135+9=144 答略。 (2)觀察框內(nèi)的六個數(shù)可知:①上、下兩數(shù)之差都是7;②方框中間堅行的11和18,分別是上橫行與下橫行三個數(shù)的中間數(shù)。 11=(10+11+12)÷3 18=(17+18+19)÷3 所以上橫行與下橫行兩個中間數(shù)的和是: 87÷3=29 由此可得,和是837的六個數(shù)中,橫向排列的上、下兩行兩個中間數(shù)的和是: 837÷3=279 因為上、下兩個數(shù)之差是7,所以假定上面的數(shù)是x,則下面的數(shù)是x+7。 x+(x+7)=279 2x+7=279 2x=279-7 =272 x=272÷2 =136 x+7=136+7 =143 因為上一橫行中間的數(shù)是136,所以,第一個數(shù)是:136-1=135 第三個數(shù)是:135+2=137 因為下一橫行中間的數(shù)是143,所以, 第四個數(shù)是:143-1=142 第六個數(shù)是:142+2=144 答略。
*例9 有一個長方體木塊,鋸去一個頂點后還有幾個頂點?(適于五年級程度) 解:(1)鋸去一個頂點(圖1-12),因為正方體原來有8個頂點,鋸去一個頂點后,增加了三個頂點,所以, 8-1+3=10 即鋸去一個頂點后還有10個頂點。
(2)如果鋸開的截面通過長方體的一個頂點,則剩下的頂點是8-1+2=9(個)(圖1-13)。 (3)如果鋸開的截面通過長方體的兩個頂點,則剩下的頂點是8-1+1=8(個)(圖1-14)。
(4)如果鋸開的截面通過長方體的三個頂點,則剩下的頂點是8-1=7(個)(圖1-15)。
例10 將高都是1米,底面半徑分別是1.5米、1米和0.5米的三個圓柱組成一個物體(圖1-16),求這個物體的表面積S。(適于六年級程度) 解:我們知道,底面半徑為γ,高為h的圓柱體的表面積是2πγ2+2πγh。
本題的物體由三個圓柱組成。如果分別求出三個圓柱的表面積,再把三個圓柱的表面積加在一起,然后減去重疊部分的面積,才能得到這個物體的表面積,這種計算方法很麻煩。這是以一般的觀察方法去解題。 如果我們改變觀察的方法,從這個物體的正上方向下俯視這個物體,會看到這個物體上面的面積就像圖1-17那樣。這三個圓的面積,就是底面半徑是1.5米的那個圓柱的底面積。所以,這個物體的表面積,就等于一個大圓柱的表面積加上中、小圓柱的側面積。 (2π×1.52+2π×1.5×1)+(2π×1×1)+(2π×0.5×1) =(4.5π+3π)+2π+π =7.5π+3π =10.5π =10.5×3.14 =32.97(平方米) 答略。
*例11 如圖1-18所示,某鑄件的橫截面是扇形,半徑是15厘米,圓心角是72°,鑄件長20厘米。求它的表面積和體積。(適于六年級程度) 解:遇到這樣的題目,不但要注意計算的技巧,還要注意觀察的全面性,不可漏掉某一側面。圖1-18表面積中的一個長方形和一個扇形就容易被漏掉,因而在解題時要仔細。 求表面積的方法1:
=3.14×45×2+600+120×3.14 =3.14×90+3.14×120+600 =3.14×(90+120)+600 =659.4+600 =1259.4(平方厘米) 求表面積的方法2:
=3.14×210+600 =659.4+600 =1259.4(平方厘米) 鑄件的體積:
=3.14×225×4 =3.14×900 =2826(立方厘米) 答略。
|