美國麻州的克雷( Clay )數(shù)學(xué)研究所于 2000 年 5 月 24 日在巴黎法蘭西學(xué)院宣布了一件被媒體炒得火熱的大事:對(duì)七個(gè) “ 千僖年數(shù)學(xué)難題 ” 的每一個(gè)懸賞一百萬美元。以下是這七個(gè)難題的簡單介紹。 “ 千僖難題 ” 之一: P (多項(xiàng)式算法)問題對(duì) NP (非多項(xiàng)式算法)問題 在一個(gè)周六的晚上,你參加了一個(gè)盛大的晚會(huì)。由于感到局促不安,你想知道這一大廳中是否有你已經(jīng)認(rèn)識(shí)的人。你的主人向你提議說,你一定認(rèn)識(shí)那位正在甜點(diǎn)盤附近角落的女士羅絲。不費(fèi)一秒鐘,你就能向那里掃視,并且發(fā)現(xiàn)你的主人是正確的。然而,如果沒有這樣的暗示,你就必須環(huán)顧整個(gè)大廳,一個(gè)個(gè)地審視每一個(gè)人,看是否有你認(rèn)識(shí)的人。生成問題的一個(gè)解通常比驗(yàn)證一個(gè)給定的解時(shí)間花費(fèi)要多得多。這是這種一般現(xiàn)象的一個(gè)例子。與此類似的是,如果某人告訴你,數(shù) 13 , 717 , 421 可以寫成兩個(gè)較小的數(shù)的乘積,你可能不知道是否應(yīng)該相信他,但是如果他告訴你它可以因子分解為 3607 乘上 3803 ,那么你就可以用一個(gè)袖珍計(jì)算器容易驗(yàn)證這是對(duì)的。不管我們編寫程序是否靈巧,判定一個(gè)答案是可以很快利用內(nèi)部知識(shí)來驗(yàn)證,還是沒有這樣的提示而需要花費(fèi)大量時(shí)間來求解,被看作邏輯和計(jì)算機(jī)科學(xué)中最突出的問題之一。它是斯蒂文 · 考克( Stephen Cook )于1971年陳述的。 “ 千僖難題 ” 之二: 霍奇 (Hodge) 猜想 二十世紀(jì)的數(shù)學(xué)家們發(fā)現(xiàn)了研究復(fù)雜對(duì)象的形狀的強(qiáng)有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對(duì)象的形狀通過把維數(shù)不斷增加的簡單幾何營造塊粘合在一起來形成。這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導(dǎo)至一些強(qiáng)有力的工具,使數(shù)學(xué)家在對(duì)他們研究中所遇到的形形色色的對(duì)象進(jìn)行分類時(shí)取得巨大的進(jìn)展。不幸的是,在這一推廣中,程序的幾何出發(fā)點(diǎn)變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。霍奇猜想斷言,對(duì)于所謂射影代數(shù)簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實(shí)際上是稱作代數(shù)閉鏈的幾何部件的 ( 有理線性 ) 組合。 “ 千僖難題 ” 之三: 龐加萊 (Poincare) 猜想 如果我們伸縮圍繞一個(gè)蘋果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動(dòng)收縮為一個(gè)點(diǎn)。另一方面,如果我們想象同樣的橡皮帶以適當(dāng)?shù)姆较虮簧炜s在一個(gè)輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點(diǎn)的。我們說,蘋果表面是 “ 單連通的 ” ,而輪胎面不是。大約在一百年以前,龐加萊已經(jīng)知道,二維球面本質(zhì)上可由單連通性來刻畫,他提出三維球面 ( 四維空間中與原點(diǎn)有單位距離的點(diǎn)的全體 ) 的對(duì)應(yīng)問題。這個(gè)問題立即變得無比困難,從那時(shí)起,數(shù)學(xué)家們就在為此奮斗?! ? “ 千僖難題 ” 之四: 黎曼 (Riemann) 假設(shè) 有些數(shù)具有不能表示為兩個(gè)更小的數(shù)的乘積的特殊性質(zhì),例如, 2,3,5,7, 等等。這樣的數(shù)稱為素?cái)?shù);它們?cè)诩償?shù)學(xué)及其應(yīng)用中都起著重要作用。在所有自然數(shù)中,這種素?cái)?shù)的分布并不遵循任何有規(guī)則的模式;然而,德國數(shù)學(xué)家黎曼 (1826~1866) 觀察到,素?cái)?shù)的頻率緊密相關(guān)于一個(gè)精心構(gòu)造的所謂黎曼蔡塔函數(shù) z(s$ 的性態(tài)。著名的黎曼假設(shè)斷言,方程 z(s)=0 的所有有意義的解都在一條直線上。這點(diǎn)已經(jīng)對(duì)于開始的 1,500,000,000 個(gè)解驗(yàn)證過。證明它對(duì)于每一個(gè)有意義的解都成立將為圍繞素?cái)?shù)分布的許多奧秘帶來光明。 “ 千僖難題 ” 之五: 楊-米爾斯 (Yang-Mills) 存在性和質(zhì)量缺口 量子物理的定律是以經(jīng)典力學(xué)的牛頓定律對(duì)宏觀世界的方式對(duì)基本粒子世界成立的。大約半個(gè)世紀(jì)以前,楊振寧和米爾斯發(fā)現(xiàn),量子物理揭示了在基本粒子物理與幾何對(duì)象的數(shù)學(xué)之間的令人注目的關(guān)系?;跅睿谞査狗匠痰念A(yù)言已經(jīng)在如下的全世界范圍內(nèi)的實(shí)驗(yàn)室中所履行的高能實(shí)驗(yàn)中得到證實(shí):布羅克哈文、斯坦福、歐洲粒子物理研究所和筑波。盡管如此,他們的既描述重粒子、又在數(shù)學(xué)上嚴(yán)格的方程沒有已知的解。特別是,被大多數(shù)物理學(xué)家所確認(rèn)、并且在他們的對(duì)于 “ 夸克 ” 的不可見性的解釋中應(yīng)用的 “ 質(zhì)量缺口 ” 假設(shè),從來沒有得到一個(gè)數(shù)學(xué)上令人滿意的證實(shí)。在這一問題上的進(jìn)展需要在物理上和數(shù)學(xué)上兩方面引進(jìn)根本上的新觀念?! ? “ 千僖難題 ” 之六: 納維葉-斯托克斯 (Navier-Stokes) 方程的存在性與光滑性 起伏的波浪跟隨著我們的正在湖中蜿蜒穿梭的小船,湍急的氣流跟隨著我們的現(xiàn)代噴氣式飛機(jī)的飛行。數(shù)學(xué)家和物理學(xué)家深信,無論是微風(fēng)還是湍流,都可以通過理解納維葉-斯托克斯方程的解,來對(duì)它們進(jìn)行解釋和預(yù)言。雖然這些方程是 19 世紀(jì)寫下的,我們對(duì)它們的理解仍然極少。挑戰(zhàn)在于對(duì)數(shù)學(xué)理論作出實(shí)質(zhì)性的進(jìn)展,使我們能解開隱藏在納維葉-斯托克斯方程中的奧秘。 “ 千僖難題 ” 之七: 貝赫 (Birch) 和斯維訥通-戴爾 (Swinnerton-Dyer) 猜想 數(shù)學(xué)家總是被諸如 那樣的代數(shù)方程的所有整數(shù)解的刻畫問題著迷。歐幾里德曾經(jīng)對(duì)這一方程給出完全的解答,但是對(duì)于更為復(fù)雜的方程,這就變得極為困難。事實(shí)上,正如馬蒂雅謝維奇 (Yu.V.Matiyasevich) 指出,希爾伯特第十問題是不可解的,即,不存在一般的方法來確定這樣的方法是否有一個(gè)整數(shù)解。當(dāng)解是一個(gè)阿貝爾簇的點(diǎn)時(shí),貝赫和斯維訥通-戴爾猜想認(rèn)為,有理點(diǎn)的群的大小與一個(gè)有關(guān)的蔡塔函數(shù) z(s) 在點(diǎn) s=1 附近的性態(tài)。特別是,這個(gè)有趣的猜想認(rèn)為,如果 z(1) 等于 0, 那么存在無限多個(gè)有理點(diǎn) ( 解 ) ,相反,如果 z(1) 不等于 0, 那么只存在有限多個(gè)這樣的點(diǎn)。 |
|