小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

萬字長文:ChatGPT能否成為互聯(lián)網(wǎng)后下一個(gè)系統(tǒng)性機(jī)會(huì)?

 James5291 2023-02-24 發(fā)布于北京

ChatGPT帶來的沖擊與機(jī)會(huì)

我們和四位行業(yè)大牛聊了聊最近大火的ChatGPT。

首先介紹一下本場嘉賓:陶芳波博士是前Facebook高級(jí)研究科學(xué)家,回國后進(jìn)入阿里達(dá)摩院,搭建了阿里的神經(jīng)符號(hào)實(shí)驗(yàn)室,屬于全球最頂級(jí)的AI科學(xué)家之一,目前正在創(chuàng)業(yè),擔(dān)任人工智能公司「心識(shí)宇宙」的CEO。

黃東旭是險(xiǎn)峰的老朋友,「PingCAP」的聯(lián)合創(chuàng)始人兼CTO,他本人是國內(nèi)最早一批開源數(shù)據(jù)庫的創(chuàng)業(yè)者,在程序員圈子里非?;钴S;PingCAP也是目前Infra領(lǐng)域估值最高的科技公司之一,險(xiǎn)峰曾在天使輪分別投資了PingCAP和心識(shí)宇宙

費(fèi)良宏老師是AWS的首席架構(gòu)師,曾供職于微軟、蘋果等多家硅谷巨頭擔(dān)任技術(shù)顧問,在云計(jì)算行業(yè)里深耕多年;龍波博士目前擔(dān)任Meta商業(yè)化AI研究團(tuán)隊(duì)的負(fù)責(zé)人,之前曾深度參與過京東搜索推薦算法的搭建。

此次圓桌由險(xiǎn)峰長青投資副總裁李抗主持,李抗主要專注于人工智能、機(jī)器人、云計(jì)算等方向的投資。

本次我們將聊到:

ChatGPT 效果如此「炸裂」,AI從業(yè)者們事先是否預(yù)見到了?

ChatGPT 是否能理解語言邏輯本身?

為什么谷歌沒能做出 ChatGPT?

開源圈和云計(jì)算巨頭是如何看待 ChatGPT的?

ChatGPT 能讓TMT投資人「再干15年」嗎?

ChatGPT 正在對(duì)哪些工作崗位造成影響?

ChatGPT 廣泛使用后,人的認(rèn)知能力會(huì)下降嗎?

ChatGPT 會(huì)導(dǎo)致哪些行業(yè)消失?哪些公司急需轉(zhuǎn)型?

小公司如何抓住 ChatGPT 的逆襲機(jī)會(huì)?

硅谷現(xiàn)在如何看待 ChatGPT?

普通人如何擁抱 ChatGPT ?報(bào)考計(jì)算機(jī)專業(yè)還有前途嗎?

OpenAI的組織設(shè)計(jì)給創(chuàng)業(yè)者帶來哪些啟示?

ChatGPT效果如此「炸裂」

AI 從業(yè)者們是否預(yù)見到了?

險(xiǎn)峰:去年AI作畫也火過一陣,但都沒能像ChatGPT一樣讓普通人感到震撼,似乎是一夜之間,AI就達(dá)到了一個(gè)如此炸裂的效果,基于各位對(duì)NLP與AIGC的理解,這種進(jìn)步是在意料之中還是意料之外?

陶芳波:剛才主持人已經(jīng)介紹過我的背景,我本人從讀博士到后來工作創(chuàng)業(yè),一直在從事AI相關(guān)的科研工作,但坦白來說,這次ChatGPT給我?guī)淼恼鸷常⒉粊営谄聊磺暗拿總€(gè)人。

傳統(tǒng)上,越復(fù)雜的技術(shù),信息壁壘也越高,所以過去的情況往往是,行業(yè)內(nèi)的人都已經(jīng)知道技術(shù)發(fā)展到了什么水平,但大眾可能還不知道;而ChatGPT完全不是這樣,它剛剛誕生3個(gè)月,我們就看到無論巨頭大廠還是AI科學(xué)家們,都馬上進(jìn)入了一種非常緊張的應(yīng)對(duì)狀態(tài),甚至可以說是應(yīng)激狀態(tài)。ChatGPT突然具有了這么強(qiáng)大的通用性能力和邏輯推理能力,是超出很多AI從業(yè)者設(shè)想的。

為什么這件事會(huì)發(fā)生?我僅從個(gè)人角度做一個(gè)簡單的總結(jié)。

第一,是大數(shù)據(jù)和大算力的發(fā)展,這是一個(gè)基礎(chǔ)。2012年深度學(xué)習(xí)剛剛誕生的時(shí)候,大家就嘗試把更多的算力和數(shù)據(jù)灌輸?shù)揭粋€(gè)模型中去,讓AI具有更強(qiáng)的能力,這個(gè)邏輯在今天依然沒有變化。

我們知道人腦要比動(dòng)物的大腦更聰明,兩者最直觀的差別,是人腦的神經(jīng)元和神經(jīng)突觸更多,比如人腦的神經(jīng)元有1000億,神經(jīng)突觸可能有幾萬億,今天ChatGPT可以達(dá)到上千億的參數(shù)量,已經(jīng)跟人腦比較接近了,量變才有可能引發(fā)質(zhì)變,AI的發(fā)展首先要靠算力數(shù)據(jù)的指數(shù)級(jí)發(fā)展。

第二,是在人工智能的發(fā)展背后,其實(shí)一直有「專用人工智能」和「通用人工智能」的兩派觀點(diǎn)的爭論。

以前我們熟悉的人工智能,比如計(jì)算機(jī)視覺算法和自然語言算法,都屬于「專用人工智能」。而在他們以外,其實(shí)一直有另一撥人在嘗試,有沒有可能把單個(gè)的專項(xiàng)AI變成一個(gè)通用AI?用一個(gè)統(tǒng)一的大模型來解決所有的問題?

這里面有幾個(gè)關(guān)鍵性的節(jié)點(diǎn),首先是2017年,谷歌大腦(Google brain)發(fā)表了一篇關(guān)于transformer的文章,奠定了包括今天ChatGPT所有技術(shù)的基礎(chǔ),細(xì)節(jié)這里不展開了——總之它讓很多人意識(shí)到,通用型AI是有可能被造出來的。

對(duì)此,谷歌的做法是首先搞一個(gè)底座,這個(gè)底座叫做「預(yù)訓(xùn)練大模型」,然后不斷向底座里灌輸數(shù)據(jù),讓它上面能長出一個(gè)個(gè)小模型來,再用這些小模型去解決不同的任務(wù)。

這時(shí)出現(xiàn)了一家公司叫OpenAI,他說我不相信仍然需要訓(xùn)練小模型來造出通用AI,那我能不能直接讓大模型去閱讀互聯(lián)網(wǎng)上所有的數(shù)據(jù)?砍掉中間環(huán)節(jié),直接讓人用語言去和大模型交流?

基于這種思想,OpenAI在2018和2019年,分別推出了GPT1和GPT2,但當(dāng)時(shí)它的通用性還不強(qiáng),沒有引起太多關(guān)注,然而到2020年,第三代也就是GPT3出現(xiàn)了。

GPT3直接把模型參數(shù)量從15億提升到1,750億,接近了人腦中神經(jīng)連接的數(shù)量水平,這時(shí)一個(gè)神奇的事情就發(fā)生了,AI開始「涌現(xiàn)」出了一些人腦獨(dú)特的能力,甚至出現(xiàn)了邏輯判斷能力,這在以前的機(jī)器學(xué)習(xí)界是不存在的,我甚至覺得連OpenAI內(nèi)部都不一定能預(yù)判到這件事情會(huì)發(fā)生。

而這個(gè)GPT3,就是今天ChatGPT誕生的起點(diǎn),正是因?yàn)镚PT3的出現(xiàn),大家才開始去基于它去開發(fā)一些全新的AI能力。

可以這么說,從2020年的GPT3開始,整個(gè)AI行業(yè)都進(jìn)入到了下一代范式,至于它的邊界在哪里,大家都不知道,沒有人有足夠的認(rèn)知。

這也是我想講的第三點(diǎn),就是OpenAI之所以能超越于谷歌,是他們真的在嘗試?yán)斫狻笇W(xué)習(xí)」這件事的本質(zhì)。

早期的AI要靠人工打標(biāo)簽,要一個(gè)活人坐在屏幕前告訴機(jī)器——這是一只貓,這是一只狗;之后發(fā)展到GPT3,這時(shí)已經(jīng)不用再打標(biāo),而是讓機(jī)器直接去閱讀大量的數(shù)據(jù),看它能不能找出里面蘊(yùn)含的規(guī)律和規(guī)則。

在這個(gè)基礎(chǔ)上,OpenAI又進(jìn)一步,他們說既然AI已經(jīng)學(xué)了這么多知識(shí),那下一步就是怎么把這些知識(shí)輸出來,變成人可以用的東西;于是OpenAI開始教大模型如何自我改造,更好的去解答人類提出的指令,而后甚至演化成AI自我對(duì)抗一個(gè)人類制定的判斷標(biāo)準(zhǔn),完成AI的「社會(huì)化改造」,到2022年,ChatGPT橫空出世了。

剛才東旭提到,他現(xiàn)在每天都用ChatGPT幫自己寫代碼,代碼其實(shí)比自然語言更有邏輯性,站在AI的視角,等于你也是在幫它培養(yǎng)邏輯能力。

如果說GPT3還在無目的數(shù)據(jù)中學(xué)習(xí),到了ChatGPT就已經(jīng)變成了「在應(yīng)用中學(xué)習(xí)」。整個(gè)過程真的很像一個(gè)年輕人走出校園,進(jìn)入到公司中實(shí)習(xí)的感覺。

所以我們可以看到,OpenAI一直在探索人類學(xué)習(xí)的本質(zhì)是什么,當(dāng)他們把這一整套工業(yè)化的體系和自己對(duì)AI的超前認(rèn)知整合到一起,就創(chuàng)造出了ChatGPT,這時(shí)候所有人才發(fā)現(xiàn),原來我們已經(jīng)落后了OpenAI這么多,我們還在模仿人家2020年的GPT3版本。

所以ChatGPT不僅對(duì)普通人是震撼,對(duì)大公司來說更是震撼,我們必須去面對(duì)這個(gè)全新的現(xiàn)實(shí),思考該怎樣迎接這樣一個(gè)新物種的出現(xiàn),以及未來人類分工的變化。

費(fèi)良宏:我補(bǔ)充兩句,今天我們看到市場一夜間被引爆,但背后絕不是一日之功。

首先是2017年transformer那篇論文,將整個(gè)NLP市場完全被顛覆了。以前很長一段時(shí)間里,大家都覺得非精確的模糊化語義很難被突破,但transformer出現(xiàn)之后,一下把NLP精度提升到了無法想象的量級(jí)。這時(shí)所有人的研究方向全部都開始轉(zhuǎn)向了transformer,這是一個(gè)里程碑式的改變,我覺得怎么樣去夸它都不為過。

第二個(gè)是算力,剛才陶博士也提到,最早的時(shí)候我們自己搞一臺(tái)電腦,裝上1080Ti都可以跑一些模型,但今天由于參數(shù)提升,千億級(jí)規(guī)模的算力已經(jīng)不是普通人能參與的,也許真的是大力出奇跡,誕生了ChatGPT,那么未來延續(xù)著這條路,不斷堆積數(shù)據(jù)量,增加模型的數(shù)量,比如據(jù)說GPT3使用了45PB的數(shù)據(jù)量,未來是不是可以用100PB數(shù)量、萬億級(jí)參數(shù)甚至更大規(guī)模的算力?或許真能誕生出一個(gè)非常強(qiáng)大的通用型AI,對(duì)此我是比較樂觀的。

龍波:我對(duì)于ChatGPT的出現(xiàn)并不特別驚訝,準(zhǔn)確的說,是對(duì)它的效果不驚訝,但是速度上我還是挺驚訝的,沒想到會(huì)來的這么快。

剛才幾位都談到了一個(gè)重要的點(diǎn),即transformer的里程碑作用,這里我想從NLP的角度分享一下,為什么它是里程碑?

從NLP發(fā)展的邏輯來看,最早的NLP模型是基于對(duì)單個(gè)單詞統(tǒng)計(jì)來做的,到后來卷積網(wǎng)絡(luò)(CNN)出現(xiàn),機(jī)器開始能夠基于兩三個(gè)單詞來理解詞義;再往下發(fā)展到RNN時(shí)代,這時(shí)AI基本上就可以沿著整個(gè)sequence進(jìn)行積累,可以理解相對(duì)長的短語和句子,不過依然還無法真正理解上下文。

隨后一個(gè)很重要的突破,是「注意力機(jī)制」(attention model)被提出,其實(shí)transformer的核心概念也是來自于此;在這個(gè)階段,AI開始能夠結(jié)合所有上下文,理解每個(gè)詞之間表達(dá)重要性的不同。

這就很像我們的快速閱讀,為什么人類能夠做到「一目十行」,是因?yàn)槲覀兡芸吹揭恍╆P(guān)鍵詞,而每個(gè)詞的重要性不一樣。

「注意力機(jī)制」正是起到了這個(gè)作用,它告訴AI各個(gè)關(guān)鍵詞之間的關(guān)系如何,誰重要誰不重要。整個(gè)行業(yè)再往后就是transformer誕生,然后Bert(Bidirectional Encoder Representations from Transformers)誕生,其實(shí)Bert也非常重要,就像陶博士剛才提到的,Bert可以使用大量沒有標(biāo)注的數(shù)據(jù),自己創(chuàng)建一些簡單任務(wù)來做self learning。

舉個(gè)例子,比如一句話,AI會(huì)把其中的一個(gè)詞藏起來,然后猜這個(gè)詞應(yīng)該是什么,有點(diǎn)像機(jī)器自己和自己玩游戲,如此它的語言理解能力就變得越來越強(qiáng)——我覺得到了這個(gè)時(shí)間點(diǎn)上,當(dāng)AI開始利用大量非標(biāo)注數(shù)據(jù)完成自主訓(xùn)練,ChatGPT的出現(xiàn)就只是個(gè)時(shí)間問題了。

但是這也是它的局限性,ChatGPT無論如何驚艷,它仍然是個(gè)統(tǒng)計(jì)語言模型,本質(zhì)還是基于它所看到過所有數(shù)據(jù),用統(tǒng)計(jì)意義上的預(yù)測結(jié)果進(jìn)行下一步輸出,當(dāng)它拿到的數(shù)據(jù)里有邏輯的時(shí)候,它會(huì)通過統(tǒng)計(jì)的方法把邏輯找出來,讓你感覺到它的回答很有邏輯,但假如它讀了很多雜亂無章的文本,它一樣會(huì)說話沒有邏輯,這是統(tǒng)計(jì)語言模型天生的缺陷。

所以我并不確定,未來隨著參數(shù)越來越多,ChatGPT能否真正成為AGI(通用人工智能)?因?yàn)槿说耐评砟芰Σ⒉煌耆诮y(tǒng)計(jì)信號(hào),這是我個(gè)人比較保守的看法。

ChatGPT 是否能理解邏輯本身?

險(xiǎn)峰:這個(gè)話題本來是后面的,正好提到了就提前探討一下。

現(xiàn)在很多人會(huì)覺得ChatGPT很酷、很有邏輯,但有的時(shí)候也會(huì)覺得它在一本正經(jīng)的胡說八道,有些很簡單的問題它會(huì)答錯(cuò),這件事反過來也會(huì)讓大家好奇,ChatGPT是否真的具有邏輯?或者說理解邏輯?

對(duì)此,也有兩派觀點(diǎn),一派是覺得極致的模擬就可以實(shí)現(xiàn)邏輯,雖然只是基于統(tǒng)計(jì)學(xué),但看起來有邏輯其實(shí)就等于邏輯本身;一派覺得所有模擬都只能得到大概的正確,最后還是要建立在極其精準(zhǔn)的規(guī)則之上,兩派的分歧可能就是統(tǒng)計(jì)和規(guī)則的區(qū)別。

此外還有第三種觀點(diǎn),借鑒了生物組織的復(fù)雜性來解釋這個(gè)問題,比如蟻群,單獨(dú)一只螞蟻可能不知道自己在干什么,但是一個(gè)蟻群就可以做很多復(fù)雜的事情,這兩者也類似于神經(jīng)元和大腦的關(guān)系,對(duì)這個(gè)問題也想聽聽幾位的思考。

黃東旭:先說一個(gè)外部視角,我最近一直在用ChatGPT寫代碼,可能是玩的確實(shí)太多了,基本沒有遇到AI胡說八道的情況;個(gè)人觀點(diǎn),很多人覺得它不準(zhǔn)有兩種情況,一種是問題沒問對(duì),如果問題本身是模糊的,它給出的答案也會(huì)是模糊的,比如一些開放式的問題。

第二是它有些回答不一定是假的,只是中間跳過了很多步驟,比如一個(gè)問題,需要從A到B再到C依次推理,其實(shí)每一步都會(huì)有一些假設(shè),但如果某個(gè)假設(shè)錯(cuò)了,答案也會(huì)出問題。

所以我們內(nèi)部在使用時(shí),會(huì)不停地教ChatGPT如何思考,跟教小朋友一樣,他回答錯(cuò)了就跟他說,你要不再讀一遍題目?或者直接問他——那你覺得這個(gè)問題應(yīng)該如何提問?最后你會(huì)發(fā)現(xiàn),只要你把你想要的思考方法教給他,他回答的準(zhǔn)確率會(huì)非常高。

注意,在這個(gè)過程里,我們并沒有向它提供任何的信息增量,所以我覺得ChatGPT已經(jīng)超越了一個(gè)傳統(tǒng)意義上的語言統(tǒng)計(jì)模型,絕對(duì)不是單純的鸚鵡學(xué)舌,但我也不知道它為什么會(huì)有這個(gè)能力。

陶芳波:我也簡單說一下我的看法。我觀察到一個(gè)現(xiàn)象,在GPT3出來之后,特別是今年ChatGPT出來之后,很多AI領(lǐng)域非常資深的人都在激烈地反對(duì)大模型。

我曾經(jīng)也有這樣的心態(tài),覺得這個(gè)東西也許就只是一個(gè)統(tǒng)計(jì)模型,解決不了人類的終極問題。但是現(xiàn)在我認(rèn)為,這樣的思想說嚴(yán)重點(diǎn),就屬于是「舊時(shí)代的余孽」,當(dāng)然這句話是自嘲的,因?yàn)槲以?jīng)就是舊時(shí)代的余孽,但今天我選擇去擁抱他。

因?yàn)閷?duì)于人工智能,我們永遠(yuǎn)都可以從「它在某某事情上做得還不夠好」來批評(píng)它。但是如果我們回過頭來想一下,一個(gè)人如果只有大腦,我們的邏輯能力又有多強(qiáng)?

人的所謂邏輯能力,說到底也無非是通過直覺,跳過兩三步來推演出一個(gè)結(jié)果,如果真到了六步七步的推理,我們光靠一個(gè)大腦也解決不了,也需要草稿紙和計(jì)算器,換句話說,人類也是要通過外部工具來增強(qiáng)邏輯能力的。

從這個(gè)角度講,今天ChatGPT所涌現(xiàn)出來的邏輯能力和人是其實(shí)差不多的。

但是大家低估了一個(gè)東西,如果用發(fā)展的眼光再往前推一步,你覺得OpenAI下一步會(huì)做什么?微軟下一步會(huì)做什么?一件非??赡艿氖?,是他們會(huì)把ChatGPT跟各種各樣的工具結(jié)合起來。

那時(shí),ChatGPT完全可以把這些工具變成自己的「草稿紙和計(jì)算器」,他自己只完成邏輯的部分即可。

所以,我們其實(shí)可以把ChatGPT當(dāng)做是一個(gè)非常穩(wěn)定的原始大腦,未來他還將去學(xué)習(xí)使用工具,那時(shí)他所具有的能力會(huì)比今天大得多,這將是一個(gè)非常有想象力的未來。

費(fèi)良宏:非常認(rèn)同陶博士,前幾天看到LeCun在推特上跟人論戰(zhàn),談ChatGPT對(duì)于AI的影響,我也有同樣的感覺,就是可能很多人對(duì)ChatGPT的判斷太拘泥于以往的經(jīng)驗(yàn)了,還是把它當(dāng)做是GPT3或者GPT2。

比如OpenAI在發(fā)表ChatGPT的那篇論文中,專門提到他們使用了人類反饋的強(qiáng)化學(xué)習(xí),去彌補(bǔ)堆砌資料造成的一些不足。所以某種程度來講,ChatGPT的邏輯不僅僅是來自于文本的訓(xùn)練,還來自于人類給它的主觀反饋,我們利用這種獎(jiǎng)勵(lì)機(jī)制,讓AI產(chǎn)生一種內(nèi)部的自我判斷能力。

我覺得這是一種非常巧妙的進(jìn)步,相當(dāng)于把強(qiáng)化學(xué)習(xí)跟大模型結(jié)合在了一起。今天可能我們的資源投入還比較有限,讓ChatGPT不足以解決更廣義上的所有問題,但未來如果我們的投入足夠大,強(qiáng)化學(xué)習(xí)的引入程度足夠高,機(jī)制設(shè)計(jì)得足夠巧妙,會(huì)不會(huì)結(jié)果也將遠(yuǎn)遠(yuǎn)超出我們今天的預(yù)期?

不過,這也引出了另外一個(gè)問題,就是關(guān)于ChatGPT傾向性的爭論。隨著人類用越來越多的反饋干預(yù)了它的判斷,那會(huì)不會(huì)讓ChatGPT帶有某種思潮,比如說政治傾向,最近我看到國外有一些人對(duì)它進(jìn)行測試,發(fā)現(xiàn)它在政治上并不是完全中立的,是一個(gè)左翼的自由派環(huán)保主義者。

從這個(gè)角度出發(fā),我認(rèn)為ChatGPT是具有邏輯的,因?yàn)檫@個(gè)邏輯是由人賦予他的,也是人自身所存在的,這是我的看法。

龍波:當(dāng)一個(gè)非常有沖擊性的產(chǎn)品出來后,人的觀念很容易受到?jīng)_擊,但這里還是要看一些根本問題是否發(fā)生了改變,這個(gè)話題涉及到一些更深刻的東西,即我們?nèi)绾卫斫饨y(tǒng)計(jì)模型?

比如大家都提到,ChatGPT反饋模型的提高,這是一定的,因?yàn)槟憬o了它更多的統(tǒng)計(jì)數(shù)據(jù),不論是用AI的方法,還是傳統(tǒng)方法,模型都會(huì)提高,LeCun也談到過這個(gè)問題,他并不是反對(duì)統(tǒng)計(jì)模型本身,他只是想說,如果我們要?jiǎng)?chuàng)造真正的通用人工智能,僅僅靠統(tǒng)計(jì)模型就夠了嗎?

統(tǒng)計(jì)模型應(yīng)用在人工智能領(lǐng)域已經(jīng)幾十年了,到深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)達(dá)到高點(diǎn),但是我們想一下,人的認(rèn)知是純粹基于統(tǒng)計(jì)的嗎?我們每個(gè)人都知道,太陽從東邊升起,這是我們每天都看到的,100%的概率,這是統(tǒng)計(jì)學(xué)上的認(rèn)知,但是我們沒有停留在這一點(diǎn),我們最終理解了行星之間的相互作用力,從物理學(xué)的角度解釋了這個(gè)現(xiàn)象。

所以人類認(rèn)知的本質(zhì)是什么,我們對(duì)此的認(rèn)知也還不夠透徹,我覺得大師們是想說,統(tǒng)計(jì)模型之外,還有什么東西讓機(jī)器能更接于近人?這個(gè)問題其實(shí)沒有答案,他想表達(dá)的是一種open的心態(tài),即統(tǒng)計(jì)模型不能解決一切,它甚至都沒解決我們自己認(rèn)知的問題。

為什么谷歌沒能做出 ChatGPT?

險(xiǎn)峰:剛才大家都提到了transformer,它其實(shí)是由谷歌發(fā)表出來的,今天做出ChatGPT的卻是微軟系的OpenAI,各位覺得這背后的原因是什么?

龍波:確實(shí)很多人都有這個(gè)疑問,但其實(shí)到今天我依然認(rèn)為,谷歌在技術(shù)上是非常領(lǐng)先的,ChatGPT最關(guān)鍵的核心模型起點(diǎn),無論是transformer,還是后來的bert,這些概念都是谷歌首先提出來的。

我們知道微軟在算力方面給了ChatGPT很大幫助,但谷歌自己的TPU研發(fā)能力也非常強(qiáng)大,谷歌不缺算力,更不缺數(shù)據(jù),但正因?yàn)槿绱?,大公司要做出這種創(chuàng)新性很大的產(chǎn)品,注意我是說產(chǎn)品,一般都會(huì)被自己的優(yōu)勢束縛住手腳。

首先谷歌是一個(gè)搜索引擎巨頭,它對(duì)此非常自信,這反而讓它對(duì)其他系統(tǒng)的投入和關(guān)注都不夠,在我看來,谷歌被ChatGPT反超其實(shí)是有先兆的。

比如語音助手,坦白說谷歌的產(chǎn)品是不如亞馬遜和Siri的,像Google Assistant ,采用的依然是搜索引擎的用戶界面,你給它搜索詞,它就給你最高質(zhì)量的回答,強(qiáng)調(diào)的還是單次交互,這種觀念已經(jīng)深入產(chǎn)品的設(shè)計(jì)之中,我覺得在互動(dòng)體驗(yàn)上谷歌的投入是不足的。

但這并不是說谷歌技術(shù)不行,我有不少前同事就在谷歌research工作,他們的技術(shù)發(fā)展得非常好、非常成熟,他們有最好的資源可以從事研究,但是他們認(rèn)為搜索是他們最重要的產(chǎn)品,他們會(huì)下意識(shí)的用搜索的觀念去做一些新產(chǎn)品,對(duì)用戶的交互式體驗(yàn)本身就沒有那么注重,這是我從產(chǎn)品角度的觀察。

費(fèi)良宏:這個(gè)話題讓我想到一段商業(yè)史故事。世界上第一臺(tái)數(shù)碼相機(jī),是一名叫史蒂夫薩森的工程師在1975年發(fā)明的,他后來被稱為「數(shù)碼相機(jī)之父」,但是當(dāng)時(shí),他是一名柯達(dá)公司的員工。

后來據(jù)他回憶,這是一次前所未有的嘗試,「公司內(nèi)的反之強(qiáng)烈超出了他的想象」,結(jié)果38年之后,由于數(shù)碼相機(jī)的崛起,傳統(tǒng)膠片時(shí)代的王者柯達(dá)公司破產(chǎn),我覺得回顧歷史,跟今天也有非常相似的地方。

今天整個(gè)搜索市場,谷歌占了96%,微軟只有3%,但因?yàn)镃hatGPT的出現(xiàn),微軟很可能也會(huì)顛覆搜索領(lǐng)域的格局,而谷歌空有技術(shù)卻沒有做出這個(gè)產(chǎn)品,我覺得可見一斑,歷史總是驚人的相似。

黃東旭:這是件特別有意思的事情,因?yàn)橐郧鞍缪葸@個(gè)顛覆者的,其實(shí)是Google自己。

2000年的時(shí)候,雅虎的地位就和今天的Google一樣,當(dāng)時(shí)雅虎的搜索引擎走的是人工標(biāo)注路線,說你看我人工標(biāo)注的黃頁多準(zhǔn)確,而Google是當(dāng)時(shí)幾個(gè)大學(xué)生搞出來的,結(jié)果歷史又一次重演。

如果拋開數(shù)據(jù)量和算力這些硬性限制,只去看里面最核心的代碼量,其實(shí)就是一個(gè)小團(tuán)隊(duì)就能寫出來的。一家巨頭再次被一家小公司打敗,我覺得這就是軟件行業(yè)有意思的地方,一個(gè)非常硅谷的故事。

開源圈和云計(jì)算巨頭是如何看待ChatGPT的?

險(xiǎn)峰:谷歌的早期模型都是開源的,但ChatGPT卻選擇了閉源,結(jié)果在2個(gè)月內(nèi)用戶破億,東旭對(duì)此怎么看,ChatGPT的選擇對(duì)于后來者是否有參考價(jià)值?

黃東旭:我覺得ChatGPT的成功,并不在于開源或閉源,而是它向整個(gè)業(yè)界證明了某種技術(shù)的可行性,其實(shí)開源的工具一直都在,關(guān)鍵是有沒有人會(huì)拿出幾千萬美金去做這些東西,對(duì)此我是比較樂觀的,據(jù)我所知已經(jīng)有一些開源項(xiàng)目在做和ChatGPT差不多的事情,未來很短的時(shí)間之內(nèi),一定會(huì)出現(xiàn)一個(gè)開源的通用語言大模型。

它可能沒有ChatGPT那么強(qiáng),但是也會(huì)大致夠用,甚至可能是一個(gè)通識(shí)模型,你可以把它裝載到自己的系統(tǒng)里面去,跟它一起去協(xié)作,我覺得很快就會(huì)有人沿著ChatGPT的路線,做出可以私有化部署的開源大模型,可能會(huì)是一個(gè)大廠或者一個(gè)foundation,每隔半年change一次,然后大家下載下來用。

險(xiǎn)峰云計(jì)算大廠們?cè)趺纯碈hatGPT?

費(fèi)良宏:AI的商業(yè)化主要是SaaS化,之前有很多成功案例了。另外從技術(shù)角度來看,AI的推理能力API化也已經(jīng)是一種標(biāo)準(zhǔn)做法,比如在云上部署一個(gè)推理服務(wù)器,讓前端用戶可以非常快速地獲得圖像語音內(nèi)容,這兩種模式在云計(jì)算發(fā)展的歷史上已經(jīng)被證明是完全可行的。

接下來的關(guān)鍵就是如何差異化的大模型,我個(gè)人認(rèn)為,我們可能低估計(jì)了ChatGPT的工程化難度,比如說并行訓(xùn)練、標(biāo)注以及數(shù)據(jù)管理的工作量和成本開銷,都會(huì)是非常巨大的,所以我不認(rèn)為在短時(shí)間內(nèi),會(huì)有大量能完全媲美ChatGPT的競品出現(xiàn)。

當(dāng)然,下一步還是有很多人會(huì)去做與ChatGPT類似的事情,但是我認(rèn)為時(shí)間上可能會(huì)比較久,這其中,我個(gè)人比較看好谷歌和微軟,因?yàn)樗麄冎暗姆e累已經(jīng)有足夠多。

其實(shí)剛才也談到了微軟的問題,雖然微軟只是給ChatGPT投了錢,技術(shù)上沒有參與,但是從它的布局來看,我覺得微軟其實(shí)非常有野心,要知道2019年微軟就開始向OpenAI投錢,第一次就投了10億美元,2020年就跟OpenAI談妥了GPT3的獨(dú)家授權(quán),2021年微軟就專門給OpenAI構(gòu)建了自己的超算能力。

微軟提供的這些工程能力和云計(jì)算能力,足以確保OpenAI繼續(xù)保持領(lǐng)先優(yōu)勢,如果未來任何一個(gè)競爭對(duì)手想要超越OpenAI,在這些資源上都要加倍付出,甚至要在短時(shí)間內(nèi)實(shí)現(xiàn)突破才有可能,但是現(xiàn)在,時(shí)間反而是最稀缺的,像之前「學(xué)徒巴德」(Apprentice Bard)在谷歌的發(fā)布會(huì)上「翻車」也說明,互聯(lián)網(wǎng)產(chǎn)品的競爭是非常殘酷的,雖然你也能做出來一個(gè)差不多的,但只要你不能超越市場中最好的,那就意味著失敗。

陶芳波:我接著這個(gè)話題稍微說下,因?yàn)槲覀兊臉I(yè)務(wù)跟大模型接觸非常多,首先大模型開源這件事不是剛剛開始,其實(shí)去年很多公司已經(jīng)出來了,包括OPT(Meta AI 的開源項(xiàng)目)和BLOOM(法國政府資助的開源AI),但其實(shí)它們和ChatGPT的差距非常大。

我覺得OpenAI的競爭力,表現(xiàn)在他們對(duì)于數(shù)據(jù)使用方式的認(rèn)知,還有剛才費(fèi)老師提到的工程能力和數(shù)據(jù)體系,這套東西不是說拿出50億美金,招很多的人馬上就可以解決的,這是現(xiàn)在很多投資人的誤解。

另外,我覺得AI的分層其實(shí)在今天就已經(jīng)開始了,像Sam Altman(OpenAI首席執(zhí)行官)自己就說過,OpenAI現(xiàn)在就是個(gè)Infra,未來在它上面可能會(huì)有中間層,這個(gè)中間層的作用是幫助一個(gè)個(gè)大模型Infra變成各個(gè)行業(yè)里的解決方案。

ChatGPT 能讓 TMT 投資人「再干 15 年」嗎?

險(xiǎn)峰:ChatGPT下一步會(huì)往何處去?會(huì)不會(huì)被下一個(gè)transformer顛覆?

陶芳波:個(gè)人觀點(diǎn),我們可以從底層視角來看,比如今天OpenAI做出了ChatGPT,未來或許還會(huì)有GPT4,我們先假設(shè)OpenAI的技術(shù)是最領(lǐng)先的,現(xiàn)在后面有一堆大廠巨頭和創(chuàng)業(yè)公司,正在或者將要做大模型,那如果我是OpenAI,我接下來會(huì)做什么?

我覺得第一個(gè)方向,還是怎樣用好手上的現(xiàn)有數(shù)據(jù),把模型的潛力全部挖掘出來。下一代GPT的參數(shù)量也許還能再大個(gè)10倍,但估計(jì)也就是這個(gè)規(guī)模了,不可能再擴(kuò)大1000倍,因?yàn)閰?shù)要有足夠的數(shù)據(jù)來匹配,全世界的優(yōu)質(zhì)數(shù)據(jù)就這么多,參數(shù)量搞得再大效果也不有太大提升。

另一個(gè)方向,也是Anthropic提出的,叫做「憲法AI」。就是我們能不能讓AI在一套憲法,或者說一套規(guī)則下,實(shí)現(xiàn)自我進(jìn)化,最終變得符合這套規(guī)則。舉個(gè)例子,每個(gè)國家都有自己的監(jiān)管體系,比如中東地區(qū),只有符合當(dāng)?shù)乇O(jiān)管的AI才能進(jìn)入該國,我覺得這會(huì)是一個(gè)非常好的方向,可以大大降低AI吸收信息的成本,提高它的效率。

第三個(gè)方向是多模態(tài),讓OpenAI變成一個(gè)思考引擎。我們知道人類的感知不是單一的,而是許多模塊組成的,不是說用戶說了一段話,我能感受到這段話就夠了,最簡單的,比如看漫畫書,人能夠把感知圖像和感知文字結(jié)合在一起,而不是兩個(gè)單獨(dú)的東西。

所以我覺得,接下來大模型會(huì)在這些方向上繼續(xù)發(fā)展,這是一個(gè)底座,這種狀態(tài)會(huì)維持相當(dāng)長一段時(shí)間,而接下來才是更巨大的挑戰(zhàn),無論是投資人,還是創(chuàng)業(yè)者,我們到底應(yīng)該怎樣去迎接ChatGPT的革命性變化,在它上面重構(gòu)一個(gè)巨大的新體系?

舉個(gè)例子,2007年iPhone誕生,10年之后你會(huì)發(fā)現(xiàn)整個(gè)互聯(lián)網(wǎng)生態(tài)都變了,iPhone上面長出了各種各樣的應(yīng)用,這10年間,全球誕生了多少獨(dú)角獸,誕生了多少千億、萬億美金級(jí)的公司,這些公司在iPhone出現(xiàn)之前都是不存在的,都是從一個(gè)很小的作坊開始做起來的。

我覺得今天大量的機(jī)會(huì)其實(shí)是這里面,首先是中間層的機(jī)會(huì),就像在大模型外面搭一個(gè)腳手架,讓它有1000只手1000只腳,可以做更復(fù)雜的事情,比如基于如何使用大模型構(gòu)建一個(gè)社區(qū),這是一種最輕量級(jí)的創(chuàng)業(yè)思路。再比如教會(huì)大模型怎么去使用外部工具,怎么樣更好的去理解對(duì)面的用戶,而不只是從文字輸入來理解他——這也是我們正在做的事情。

在中間層上面,還會(huì)有各種應(yīng)用層,剛才費(fèi)老師也講到,AI在SaaS端已經(jīng)被驗(yàn)證了,但我個(gè)人認(rèn)為這一波AI浪潮席卷的范圍會(huì)遠(yuǎn)大于SaaS。因?yàn)镾aaS更多還是服務(wù)于企業(yè)的效率工具,但ChatGPT肯定會(huì)拓展到C端,比如說健身、醫(yī)療,都有機(jī)會(huì)可以重做出一個(gè)交互式的軟件,把用戶界面完全拋棄掉,和移動(dòng)互聯(lián)網(wǎng)時(shí)代相比,我認(rèn)為這會(huì)是一種全新體驗(yàn)的產(chǎn)品。

黃東旭:我也有類似的觀點(diǎn),其實(shí)軟件的進(jìn)步一直都是交互方式的進(jìn)步,以前是字符界面,到后來是UI,沿著這條線往下走,未來最重要的軟件交互形態(tài)其實(shí)就是自然語言。過去我們一直在嘗試,讓軟件的使用變得更加貼近人類自然語言,但是今天我們終于有了這樣一個(gè)新工具,能重新去塑造我們跟軟件的溝通方式。

以前我們用軟件,比如說Linux,輸入一堆命令,機(jī)器才能去完成一件事情,相當(dāng)于我們要去學(xué)習(xí)機(jī)器的語言。但現(xiàn)在有了ChatGPT,你可以直接去跟他說,我想要到達(dá)到某某結(jié)果,我不管你怎么干,最后能給我結(jié)果就好,這其實(shí)是一個(gè)非常顛覆性的東西,所以我們現(xiàn)在正在做的,不斷跟GPT磨合的,也是類似的思路。

陶芳波:我記得ChatGPT剛出來的時(shí)候,就有投資人提出一個(gè)觀點(diǎn),說TMT可以重新再干15年,我覺得這個(gè)邏輯是對(duì)的,因?yàn)樯蟼€(gè)時(shí)代我們基于移動(dòng)互聯(lián)網(wǎng),做出了各種各樣的APP,而今天新的交互形式出現(xiàn)了,每一個(gè)細(xì)分的賽道上可能都會(huì)成長出一個(gè)全新的獨(dú)角獸,或者全新的商業(yè)模式,我覺得是一個(gè)完全的大洗牌。

今天ChatGPT的潛力大概只發(fā)揮了百分之幾,就已經(jīng)創(chuàng)造出超過了萬億的市場,未來這個(gè)規(guī)模可能是幾十萬億。

ChatGPT 正在對(duì)哪些工作崗位造成影響?

險(xiǎn)峰:這個(gè)問題是幫別人問的,他是個(gè)很早期的NLP從業(yè)者,想問大模型出來以后,其他的模型可能就成為歷史了,他們這些人未來應(yīng)該怎么辦?

龍波:這個(gè)問題的答案還是比較清晰的,以前那些傳統(tǒng)的NLP的手段,在這個(gè)時(shí)代肯定是不會(huì)再有用了,比如大量的語法樹之類,非常繁瑣,過去開發(fā)過程很痛苦,要一支很大的團(tuán)隊(duì)才能做出一個(gè)很小的東西,我們肯定不會(huì)再回到那個(gè)年代,老的技術(shù)基本都可以用大型語言模型(LLM,large language model)替代。

對(duì)于ChatGPT的未來,我非常同意陶博士剛才說的,如果只是一味地增加數(shù)據(jù)或增加參數(shù),不一定還能得到好的ROI,因?yàn)槟憬o了更多的數(shù)據(jù),就意味著有更多的噪音,最后信噪比可能反而更差,這也是為什么我們有時(shí)覺得ChatGPT會(huì)回答錯(cuò)的原因,所以還是要關(guān)注如何提高數(shù)據(jù)的質(zhì)量。

與數(shù)據(jù)質(zhì)量同樣重要的,可能是跟大模型的互動(dòng)。舉個(gè)例子,如果我們真的要讓ChatGPT變成某個(gè)領(lǐng)域的專家,不再犯什么錯(cuò)誤,可以想想我們培養(yǎng)一個(gè)PHD的過程是什么樣的?他需要和他的導(dǎo)師、行業(yè)大牛反復(fù)地交互討論學(xué)習(xí),才能最終成為專家,而不是說簡單的篩選高質(zhì)量數(shù)據(jù)喂給他就完了。

如果再進(jìn)一步,我們要讓ChatGPT成為真正的通用人工智能,在每個(gè)領(lǐng)域都很精深,也需要有一個(gè)方法能夠讓AI迭代高質(zhì)量數(shù)據(jù),以我覺得未來在算法層面可能會(huì)有一些突破,比如說讓RL和大語言模型更完美的結(jié)合,能夠更好地篩選出高質(zhì)量數(shù)據(jù),甚至是自動(dòng)采集這種數(shù)據(jù),這些都會(huì)跟人學(xué)習(xí)的過程越來越像。

到那時(shí),我不知道是不是只靠現(xiàn)在的統(tǒng)計(jì)模型或者大型語言模型就夠了,還是會(huì)跟其他新技術(shù)綁定在一起,比如現(xiàn)在也有人在研究,怎么把真正的推理能力和神經(jīng)網(wǎng)絡(luò)相結(jié)合,這是我看到一些未來可能發(fā)生的事情。

險(xiǎn)峰:接下來可能是很多CEO比較感興趣的問題,創(chuàng)業(yè)公司應(yīng)該如何使用ChatGPT ?它將可以替代哪些崗位?

黃東旭:個(gè)人認(rèn)為可以從兩個(gè)方面來看,對(duì)內(nèi)和對(duì)外,我先說對(duì)外。

首先在AI爆發(fā)的大背景下,我們做數(shù)據(jù)庫的還是一個(gè)挺安全的生意,因?yàn)椴还茉趺礃幽氵€是要存數(shù)據(jù)。在過去沒有AI的時(shí)候,我要從數(shù)據(jù)庫里提取數(shù)據(jù),學(xué)過計(jì)算機(jī)的朋友可能都知道要用到SQL,或者其他語言,總之是需要敲代碼才能去跟數(shù)據(jù)庫做交互。

舉個(gè)例子,之前我曾經(jīng)把我自己所有看過的電影、所有看過的書,全都導(dǎo)到了我的數(shù)據(jù)庫里,我就可以直接去問我的數(shù)據(jù)庫說,在我去年看過所有的電影里,哪個(gè)導(dǎo)演的片子最多?他會(huì)直接幫我生成SQL,SQL再去數(shù)據(jù)庫里進(jìn)行查詢,非??焖偾覝?zhǔn)確,但是前提是你必須會(huì)敲代碼,懂得機(jī)器的語言。

沿著我剛才的理論——自然語言會(huì)變成下一個(gè)軟件交互的UI,大家想象一下,如果你是個(gè)CEO,你公司里面有很多運(yùn)營數(shù)據(jù),每次你去找財(cái)務(wù),或者數(shù)據(jù)分析師,說我需要一個(gè)某某數(shù)據(jù),他可能過好幾天才能返過來,但現(xiàn)在如果有這樣的一個(gè)很神奇的數(shù)據(jù)庫,CEO可以直接開口問AI,比如今年公司花錢最多的部門是哪個(gè),馬上就可以得到答案。

那如果再推一步,我們把背后的數(shù)據(jù)集換成了區(qū)塊鏈,換成了房地產(chǎn)信息,換成了股市信息,你會(huì)發(fā)現(xiàn)一下子人人都是數(shù)據(jù)分析師,這對(duì)于各個(gè)行業(yè)都會(huì)是一個(gè)巨大的顛覆。

至于對(duì)內(nèi)部,我覺得CEO一定要放棄ChatGPT可以完全取代人的觀念,現(xiàn)階段肯定是取代不了,但是它能提高人的效率。

如果大家寫過程序就會(huì)知道,一個(gè)工程師可能有80%的時(shí)間都是做重復(fù)勞動(dòng),未來這80%的工作其實(shí)都可以讓ChatGPT來做,比如說寫文檔、寫單元測試,生成一些腳手架之類,它不會(huì)完全取代程序員,但是確實(shí)能帶來很大的提升效率。

大家如果看過《鋼鐵俠1》,里面有一個(gè)AI助手叫做賈維斯,現(xiàn)在我跟ChatGPT的工作模式與它很像,我會(huì)告訴它我要做什么東西,你先做一個(gè)原型出來,然后一步步跟它交互,告訴它可以這樣這樣搞。

所以至少目前,我并不會(huì)把ChatGPT當(dāng)做是一個(gè)可以取代人工的東西,而是給所有的工程師都配了一個(gè)賬號(hào),告訴他們遇事不決先問一下ChatGPT,搞不好效率就提升了,這是我大概的經(jīng)驗(yàn)分享。

陶芳波:我稍微插一句,我覺得東旭他們公司很厲害,已經(jīng)開始使用ChatGPT來提高效率了,其實(shí)很多國內(nèi)的公司都可以學(xué)一下。

另外他講的第一點(diǎn)我感觸很深,數(shù)據(jù)庫公司未來一定會(huì)存在,但也一定還會(huì)很多有提供其他互聯(lián)網(wǎng)信息服務(wù)的公司,我覺得他們可能都要去思考,是不是今天我暫時(shí)是安全的,ChatGPT跟我就沒有關(guān)系?

我覺得可以換一種視角,現(xiàn)在的現(xiàn)實(shí)是,這個(gè)超級(jí)大腦已經(jīng)在那里了,他未來一定是會(huì)跟各種各樣的東西連接在一起,這里面有一個(gè)很重要的點(diǎn),以前我們說信息服務(wù)的連接端口是API,還有一大堆代碼之類的,但今天這個(gè)端口很可能會(huì)變掉,變成一個(gè)更加接近于人類語言的東西。

所以我覺得每一個(gè)服務(wù)提供商,如果覺得你的信息服務(wù)很有價(jià)值,我覺得都可以嘗試去擁抱ChatGPT,看看怎么跟他建立起對(duì)話通道,越早擁抱,就越早可以讓ChatGPT把你的服務(wù)分發(fā)到更多的場景、更多的用戶。我覺得這件事情誰做得快,誰就可能成為自己賽道里的下一代巨頭企業(yè)。

ChatGPT 廣泛使用后,人類的認(rèn)知能力會(huì)下降嗎?

險(xiǎn)峰:ChatGPT出來以后,主流聲音認(rèn)為以后可能就不再需要搜索引擎了,但也有一些悲觀者認(rèn)為,我們將來接觸的大部分信息都會(huì)由機(jī)器生成,里面會(huì)有大量的假信息,這將威脅人類的認(rèn)知和判斷能力,如果我們從小就依賴這樣的產(chǎn)品,可能會(huì)是一個(gè)災(zāi)難性,對(duì)此各位怎么看?

費(fèi)良宏:這不是一個(gè)新問題,其實(shí)互聯(lián)網(wǎng)從誕生之日起,就一直在改變我們使用和消費(fèi)信息的習(xí)慣。

比如,最開始出現(xiàn)的是瀏覽器,它讓網(wǎng)頁信息變成了一種規(guī)范的、可以被瀏覽的形式;之后,隨著信息總量的不斷增長,大量垃圾信息開始影響我們的用戶體驗(yàn),這時(shí)出現(xiàn)了雅虎的黃頁,它通過人工方式去維護(hù)目錄,給每個(gè)網(wǎng)頁設(shè)置優(yōu)先級(jí)。

再往后,當(dāng)信息量繼續(xù)爆炸,黃頁的維護(hù)開始跟不上數(shù)據(jù)的生產(chǎn)速度,人們慢慢意識(shí)到,使用搜索可能會(huì)比使用黃頁更有效率,這時(shí)誕生了最早期的搜索引擎,比如AltaVista和Infoseek,但是它們的能力受限于當(dāng)時(shí)的技術(shù),還只能在一個(gè)很小的范圍內(nèi)能進(jìn)行搜索。

后來的故事大家都知道了,1998年,谷歌的兩個(gè)合伙人開始創(chuàng)業(yè),他們希望用計(jì)算機(jī)構(gòu)建一個(gè)更廣義的集群,通過大量廉價(jià)的硬件設(shè)備來滿足整個(gè)互聯(lián)網(wǎng)的搜索需求。在當(dāng)時(shí),大家認(rèn)為這是不可能實(shí)現(xiàn)的,但后來的事實(shí)證明,技術(shù)的進(jìn)步遠(yuǎn)超我們的想象,于是人類進(jìn)入了關(guān)鍵字搜索時(shí)代,開始通過搜索引擎來使用和消費(fèi)互聯(lián)網(wǎng)信息。

到了今天,互聯(lián)網(wǎng)上的信息總量已經(jīng)是一個(gè)天文數(shù)字,你的每一次搜索,結(jié)果可能有成百上千頁,里面存在大量無用或者重復(fù)的信息,那我們應(yīng)該如何應(yīng)對(duì)這樣的局面?這時(shí)ChatGPT出現(xiàn)了,它可以幫助我們?nèi)プ隹偨Y(jié)歸納,如果從信息消費(fèi)的歷史來看,這是一個(gè)巨大的進(jìn)步,這點(diǎn)無可否認(rèn)。

而從歷史來看,一旦我們養(yǎng)成了新的信息消費(fèi)習(xí)慣,就沒有辦法再回到之前的時(shí)代,我們不可能用黃頁去替代今天的搜索引擎,同樣的,未來當(dāng)我們適應(yīng)了ChatGPT,我們也回不到關(guān)鍵字搜索時(shí)代。

因此,人類下一階段的信息使用習(xí)慣一定是更高級(jí)別的,當(dāng)然這里還有成本問題,比如像ChatGPT的每一次搜索大概需要1.3美分,成本還是比較高的,如果再能降低10倍的話,我覺得整個(gè)搜索市場會(huì)被完全顛覆。

從這個(gè)角度說,ChatGPT的歷史地位可以等價(jià)于瀏覽器的出現(xiàn),或者是谷歌搜索引擎的出現(xiàn),人類每一個(gè)信息消費(fèi)習(xí)慣的進(jìn)步都意味著一個(gè)里程碑式。

龍波:非常贊同良宏的觀點(diǎn),ChatGPT的交互方式讓我們獲取信息更加高效,它帶來的影響是不可逆的,肯定會(huì)對(duì)搜索引擎,甚至推薦引擎都帶來沖擊,而且我認(rèn)為沖擊會(huì)很大。盡管短時(shí)間內(nèi)會(huì)有些技術(shù)上的挑戰(zhàn),比如如何把ChatGPT融入到搜索引擎中去,但我認(rèn)為這些都不是問題,很快都會(huì)被解決。

那么ChatGPT的挑戰(zhàn)是什么?第一個(gè)挑戰(zhàn)是商業(yè)化,任何2C的技術(shù)應(yīng)用背后一定要有商業(yè)支撐。

剛才良宏談到谷歌的巨大成功,但是其實(shí)在1999年,布林和拉里佩奇是準(zhǔn)備以100萬美元的價(jià)格把谷歌賣掉的,據(jù)說最后已經(jīng)談到了75萬,如果當(dāng)時(shí)交易達(dá)成,也就沒有后面的故事了;到了2002年,雅虎打算收購谷歌時(shí),開出的價(jià)格是100億美金,等于說4年翻了一萬倍。

為什么形勢會(huì)逆轉(zhuǎn)呢?因?yàn)樯虡I(yè)模式走通了,從display as到search as,搜索廣告的收入開始有了巨大的增長,當(dāng)時(shí)所有人都看到了谷歌的商業(yè)潛力,所以價(jià)值一下就不一樣了。也正因?yàn)槿绱?,谷歌才能有資源雇最好的員工,創(chuàng)造最好的企業(yè)文化。

未來ChatGPT也會(huì)面臨同樣的問題,比如現(xiàn)在的搜索引擎是靠點(diǎn)擊量來收費(fèi),本質(zhì)上賣的是用戶的注意力,而如果AI一秒鐘就完成了答案交付,那賣廣告的模式肯定就不再work了,一定還需要尋找新的商業(yè)模式來支撐它,當(dāng)然,我相信最后肯定也會(huì)找到。

第二個(gè)挑戰(zhàn)是人文方面的,剛才問題中也提到了,ChatGPT會(huì)極大影響人的認(rèn)知模式。

在搜索引擎時(shí)代,我們每完成一次信息收集,其實(shí)都是完成一次學(xué)習(xí)的過程。舉個(gè)例子,比如我們發(fā)論文,每篇文章后面一定要有一個(gè)reference(參考文獻(xiàn)),你要先把前人做出的研究成果講清楚,再說你在這個(gè)基礎(chǔ)上取得什么成果,這是一種知識(shí)的傳接,如果沒有reference就不可以被稱為學(xué)術(shù)論文。

谷歌的搜索引擎,也是把它認(rèn)為最相關(guān)、最高質(zhì)量的鏈接排在最上面,最后還是需要你自己去做判斷,這是人類學(xué)習(xí)的方法,你一定要有出處,要有reference,這是我們作為研究者對(duì)人類知識(shí)積累的一個(gè)基本態(tài)度。而如果AI就只給一個(gè)答案,會(huì)讓信息繭房變得更嚴(yán)重。

傳統(tǒng)來說,我們?cè)诨ヂ?lián)網(wǎng)獲取信息有兩種基本方式,一個(gè)是搜索,一個(gè)是推薦。搜索是說用戶知道自己想找什么,我就給他什么,推薦是用戶不知道自己想要什么,那我就猜你想要什么。而當(dāng)ChatGPT出來以后,因?yàn)樗刻於紩?huì)和你有交互,它會(huì)猜得更準(zhǔn)確,更嚴(yán)重的是,它還會(huì)主動(dòng)創(chuàng)造出一些讓你喜歡的答案或信息,你聽了會(huì)覺得那就是真實(shí)的,而且又沒有reference。

到那時(shí),我們要面對(duì)的信息繭房會(huì)比推薦引擎時(shí)代大得多,每個(gè)人可能只聽到自己想聽到的,只理解自己能理解的,我不知道這會(huì)對(duì)人類產(chǎn)生什么影響,但這個(gè)影響一定是世界范圍的。

ChatGPT 會(huì)導(dǎo)致哪些行業(yè)消失?

險(xiǎn)峰:在你們看來,ChatGPT的出現(xiàn)可能會(huì)把哪些行業(yè)沖垮?哪些公司現(xiàn)在急需轉(zhuǎn)型?

黃東旭:非常主觀的個(gè)人觀點(diǎn),不一定對(duì)。

第一我覺得是一些簡單的內(nèi)容編輯,或者簡單的內(nèi)容生成工作,比如寫新聞稿、寫一些簡單的summary,或者一些初級(jí)分析崗位,未來可能都要想一想,但很遺憾這樣的工作其實(shí)可能還挺多的。我覺得ChatGPT出來以后,肯定對(duì)整個(gè)社會(huì)分工造成很大的改變,但這個(gè)改變不會(huì)馬上出現(xiàn),會(huì)有一定的滯后性,但是這個(gè)改變一定是很深遠(yuǎn)的。

第二是程序員這個(gè)行業(yè)會(huì)被改變,你想象一下,相當(dāng)于過去大家都是步行趕路,現(xiàn)在突然每人發(fā)輛自行車,好處是效率一定會(huì)提升,但當(dāng)有一波人能夠熟練使用ChatGPT的時(shí)候,公司老板就會(huì)想,到底還需不需要雇這么多人了?甚至當(dāng)未來AI能夠自己寫程序時(shí),程序員在里面的位置又是什么?我自己會(huì)稍微有點(diǎn)悲觀。

陶芳波:其實(shí)從我的觀點(diǎn)來講,大公司可能是第一波受到?jīng)_擊的,都會(huì)被迫面對(duì)這樣一個(gè)巨大的變革。

今天早上我跟一個(gè)非常知名的TMT投資人交流,提到了一個(gè)點(diǎn),就是蘋果的壁壘到底有多高?在移動(dòng)互聯(lián)網(wǎng)時(shí)代,用戶只能用一臺(tái)手機(jī)去處理許多復(fù)雜的事情,所以需要強(qiáng)大的算力,需要非常好的人機(jī)交互,這是蘋果真正的壁壘。

但如果ChatGPT開始與各種產(chǎn)品結(jié)合,產(chǎn)生了一種新的交互形態(tài),是不是最后手機(jī)就會(huì)變成了一個(gè)普通的終端?換言之,如果未來AI的軟件部分,提供的服務(wù)比重越來越高,就意味著硬件價(jià)值會(huì)越來越低,蘋果手機(jī)做得再好,以后還會(huì)有那么大的價(jià)值嗎?

當(dāng)天平的兩端發(fā)生調(diào)整,如果蘋果不能及時(shí)入場,為自己的開發(fā)者生態(tài)提供AI化的能力,我覺得它其實(shí)也是很危險(xiǎn)的,再比如說亞馬遜,它的內(nèi)部也一定是red alert(亮起紅色警報(bào)),假如一個(gè)微軟云的客服,跑過去告AWS的用戶說,你要用ChatGPT嗎?來,come to Azure,我覺得至少對(duì)很多中小企業(yè)來說是一個(gè)巨大的誘惑。

所以在我的視角里,未來大公司的格局會(huì)首先發(fā)生變化,就像是微軟拿著一把全世界最牛逼的屠龍刀,一刀一刀的斬過去,就看誰的反應(yīng)夠快。

同樣沖擊也會(huì)向下影響到中小公司,比如說訂票軟件,假設(shè)行業(yè)有10個(gè)競爭者,那么誰第一個(gè)擁抱ChatGPT,把自己的數(shù)據(jù)和大模型進(jìn)行鏈接,為客戶提供一種交互式模式的訂票服務(wù),就像一個(gè)私人助理一樣,這家公司就能把所有的訂單吸過去,其他9家可能就會(huì)死掉。

這個(gè)邏輯在任何行業(yè)都會(huì)存在,因?yàn)槿丝傄喥?,總要接受醫(yī)療服務(wù),法律服務(wù),各種各樣的服務(wù),總要戀愛和社交,所以我在內(nèi)部分享時(shí)常說一句話,當(dāng)ChatGPT出現(xiàn)后,全世界只有兩種人,一種叫溺水者,他的頭被按在水下,他想要浮起來,奮力的想抓住一些東西讓自己活下來,谷歌就是這種感覺。第二種人叫淘金者,他想沖到這波浪潮里面去淘金。

這是今天市場上的兩種公司,我覺得可能誰都無法完全置身事外。你適應(yīng)能力很強(qiáng),能接受現(xiàn)實(shí),快速擁抱這個(gè)趨勢,就能抓住下一個(gè)時(shí)代的機(jī)會(huì)。

小公司如何抓住 ChatGPT 的逆襲機(jī)會(huì)?

費(fèi)良宏: ChatGPT 這一波技術(shù)革命來得比較迅猛,我個(gè)人是有點(diǎn)擔(dān)心,主要是兩點(diǎn)。一個(gè)是從個(gè)人層面。我們回顧歷史,第一次、第二次工業(yè)革命徹底粉碎了手工業(yè)者,過去這些人曾處于一個(gè)比較優(yōu)沃的社會(huì)位置,靠一門手藝就夠確保自己的美好生活,但是機(jī)器大生產(chǎn)將他們變成了普通工人。

在手工業(yè)者衰落的同時(shí),另一個(gè)新群體開始崛起,就是知識(shí)工作者,在二戰(zhàn)以后,他們成為了貢獻(xiàn)和收益都最大的一群人,當(dāng)然我們也都受益于這個(gè)群體。但ChatGPT出現(xiàn)之后,無論是程序員,還是知識(shí)工作者,都有著被機(jī)器取代的可能,這種模式一旦出現(xiàn),對(duì)每個(gè)個(gè)體的挑戰(zhàn)是非常巨大的,我對(duì)此會(huì)有擔(dān)憂,尤其應(yīng)該思考我們未來的價(jià)值在哪里?

第二是從企業(yè)的角度來看,OpenAI并不是微軟內(nèi)部孵化的,它到今天也只有375個(gè)員工,是一個(gè)100%的創(chuàng)業(yè)公司,而且是一個(gè)小型創(chuàng)業(yè)公司。包括DeepMind也是家小公司,截止到今天它的員工數(shù)量也才1000個(gè)人,和谷歌的19萬員工比起來九牛一毛。為什么微軟和谷歌內(nèi)部無法孵化出這些項(xiàng)目,而要依賴于外部的這些小企業(yè)?很重要一點(diǎn),是大企業(yè)在創(chuàng)新上的天生存在弊端和不足,哪怕是最厲害的硅谷科技公司,也無法逃脫這個(gè)規(guī)律。

我前幾天讀了一本書,Netflix 的創(chuàng)始人里德·哈斯廷斯所著的《不拘一格》,其中提到一個(gè)觀點(diǎn)叫「人才密度」——這是創(chuàng)新的前提和基礎(chǔ),只有足夠聰明的人聚在在一起共事,才會(huì)產(chǎn)生創(chuàng)意的火花,推動(dòng)偉大的創(chuàng)意變成偉大的產(chǎn)品。而如果是在人才密度相對(duì)較小的環(huán)境中,哪怕他真的是一個(gè)人才,也會(huì)被淹沒在各種噪聲和平庸的見解中。

OpenAI只有375個(gè)人,但他的人才密度一定比微軟、谷歌更好,這樣的小企業(yè)才會(huì)推動(dòng)真正的科技進(jìn)步。所以從創(chuàng)新角度看,我并不認(rèn)為大企業(yè)會(huì)對(duì)整個(gè)市場產(chǎn)生多大的影響,反倒是在資本加持之下,創(chuàng)新小企業(yè)才是科技的顛覆力量。

所以我覺得,ChatGPT給我們開了一個(gè)窗口,這個(gè)是一個(gè)千載難逢的機(jī)遇,但它是為創(chuàng)新型小企業(yè)準(zhǔn)備的,而不是大企業(yè)。這點(diǎn)上,我的觀點(diǎn)會(huì)和大家不太一樣,我并不認(rèn)為大企業(yè)能夠獲得最大的紅利。

龍波:談下我的視角,這次ChatGPT帶來的沖擊和改變,無論是大企業(yè)小企業(yè)都必須要去適應(yīng)。在它面前,我甚至認(rèn)為所有公司都是創(chuàng)業(yè)公司,如果大企業(yè)不進(jìn)行二次創(chuàng)業(yè),那么就會(huì)失去自己的優(yōu)勢,走下坡路。

總體來說,小企業(yè)的機(jī)會(huì)可能更多在應(yīng)用層。大企業(yè)的話,更要在基礎(chǔ)層和中間層開始二次創(chuàng)業(yè),不然的話那么肯定會(huì)受到巨大的挑戰(zhàn)。

舉個(gè)例子,很多人現(xiàn)在會(huì)關(guān)注微軟和谷歌的競爭,這是一條明線,但暗線的話,我認(rèn)為微軟下一個(gè)對(duì)手其實(shí)是AWS,微軟完全可以利用ChatGPT,改變整個(gè)cloud service(云服務(wù))格局,實(shí)際上ChatGPT非常適合做各種to B或者cloud-based service一類的工作,比如剛才東旭講到的數(shù)據(jù)庫例子。

再往前推一步,大家都知道,過去電商平臺(tái)要搭一套推薦系統(tǒng),是一件非常復(fù)雜的事情,因?yàn)槟愕膸炖镆呀?jīng)錄入了過去10年的商品,這些商品都是基于關(guān)鍵詞搜索系統(tǒng)設(shè)計(jì)的,如果要改成推薦制,需要招一支非常資深的工程師團(tuán)隊(duì),小公司完全用不起。但是如果將來,這些東西都可以通過ChatGPT指令自動(dòng)化完成,整個(gè)cloud的格局都會(huì)改變,我覺得微軟在這方面的機(jī)會(huì)很大,我更看好這條線。相反,在搜索引擎方面,我覺得除非是谷歌犯下很多致命的錯(cuò)誤,不然它還是很有機(jī)會(huì)能翻身的。

硅谷如何看待 ChatGPT?

險(xiǎn)峰:現(xiàn)在國內(nèi)媒體對(duì)于ChatGPT討論的非常熱烈,硅谷那邊的情況如何?他們主要關(guān)注的點(diǎn)是什么?

黃東旭:一樣非?;?。無論是在推特上,還是我身邊的人,ChatGPT應(yīng)該近幾年最大的IT新聞了。

我舉個(gè)例子,從ChatGPT第一個(gè)demo出來到現(xiàn)在,可能也就是兩個(gè)多月的時(shí)間,但硅谷可能已經(jīng)有上百家基于類似產(chǎn)品的創(chuàng)業(yè)公司出來了,所以我覺得硅谷這邊可能動(dòng)作更快一點(diǎn),而且大家不只是在討論,我甚至覺得很快就會(huì)有獨(dú)角獸出現(xiàn)了。

Everything is a wrapper of openAI,現(xiàn)在就是這樣的一個(gè)市場。

龍波:同樣的熱度,中美都一樣。不同點(diǎn)可能有兩個(gè)地方,只是我自己觀察的,不一定準(zhǔn)確。

第一是硅谷這邊更多還是在聊未來,聊技術(shù)路線的分歧,比如現(xiàn)在的大模型是不是能產(chǎn)生通用AI?未來還需要融入哪些新技術(shù)?國內(nèi)的話,我覺得反思的人可能會(huì)更多一些,比如為什么我們?cè)贏I領(lǐng)域落后了?下一步要如何追趕?這是我看到的不同,但我覺得兩者都非常好,無論是反思還是展望,可能都是我們現(xiàn)在非常需要的。

第二是硅谷對(duì)于人文關(guān)懷的討論會(huì)多一些,大家更關(guān)心ChatGPT對(duì)社會(huì)、對(duì)人類有什么樣的影響。比如很多人會(huì)持有一種悲觀的觀點(diǎn),認(rèn)為它不利于人類社會(huì)去中心化發(fā)展。

想象一下,有一個(gè)萬能的AI,它給你提供了所有答案,人人都依靠它,無條件相信它,它就變成了你的權(quán)威,實(shí)際上意味著一種中心化對(duì)個(gè)人思想的控制,而且這種東西往往只有大公司才能做出來,那就意味著大資本對(duì)整個(gè)社會(huì)思想的控制。所以可能大家會(huì)更關(guān)心如何避免這種情況發(fā)生,同時(shí)又能讓這樣的新技術(shù)提高我們效率和幸福感。

普通人如何擁抱 ChatGPT?

險(xiǎn)峰:最后一個(gè)話題,各位覺得自己或者自己所在的業(yè)務(wù)部門,面對(duì)ChatGPT會(huì)有哪些思考和行動(dòng)?

陶芳波因?yàn)槲覀冏约壕褪茿I公司,可能參與會(huì)比較直接。剛才也提到,國內(nèi)現(xiàn)在沒有辦法使用ChatGPT,目前來看,雖然有一些很不錯(cuò)的團(tuán)隊(duì)正在組建,但離跑出來可能還需要一段時(shí)間。

我覺得整個(gè)ChatGPT的生態(tài),會(huì)在未來一兩年內(nèi)逐漸形成,所以對(duì)中國企業(yè)來說,這里面還是有一些全球性機(jī)會(huì)的,中國的創(chuàng)業(yè)者不一定非要窩在家里,等著國內(nèi)的生態(tài)建立起來。

就我們公司而言,第一,是嘗試探索未來的中間層在哪里,怎樣把ChatGPT的能力提升,并用它服務(wù)于其他的企業(yè)。像東旭剛才講的,everything is a wrapper of GPT,那么how can we be the best wrapper?我覺得能做好一個(gè)wrapper本身就很有價(jià)值。

第二就是作為中國企業(yè),我們未來怎么樣幫助中國參與到全球的AI生態(tài)競爭當(dāng)中?最近有幾個(gè)大新聞,包括王慧文也在組建中國的OpenAI團(tuán)隊(duì),我們也在時(shí)刻關(guān)注著,畢竟中國是一個(gè)世界大國,無論從國家安全考慮或者科技競爭考慮,中國都需要一個(gè)這樣的東西出來。所以我們也在跟政府、大企業(yè)去合作,看看能不能幫到一些忙,或說是能參與到其中的建設(shè)。

費(fèi)良宏:可以預(yù)計(jì)的是,云計(jì)算跟AI的結(jié)合會(huì)越來越緊密,隨著ChatGPT對(duì)整個(gè)市場的普及和教育,大家對(duì)AI的認(rèn)識(shí)達(dá)到了一個(gè)新的高度。我身邊很多非技術(shù)的朋友都開始跟我探討ChatGPT,這是一個(gè)非常好的苗頭,未來無論是AI as services或者是Model as services,一定會(huì)越來普及,幫助AI與人實(shí)現(xiàn)更好的交互。

對(duì)于一個(gè)開發(fā)人員來講,與 ChatGPT相關(guān)的工程化能力未來會(huì)是一個(gè)非常關(guān)鍵的技能,所以抓緊時(shí)間窗口的機(jī)會(huì),盡快掌握這個(gè)能力,ChatGPT對(duì)每個(gè)人來說都是公平的,也是有挑戰(zhàn)的,總體來講還是機(jī)會(huì)大于挑戰(zhàn)。

黃東旭:說一個(gè)我最近的思考:在這個(gè)時(shí)代,我們應(yīng)該放棄一種觀念,就是人比AI強(qiáng),未來不應(yīng)該是我們?nèi)ソ藺I做事情,而是讓AI來教我們做事情,放棄這個(gè)執(zhí)念以后,你才可能打開新世界的大門。

比如之前我教 ChatGPT寫代碼,會(huì)給他一些例子,告訴他說你不要這么做,你應(yīng)該這么做,但他學(xué)了這些例子后,做出來的東西效果反而更不好了。后來我干脆放開手腳,讓AI自己去弄,你覺得怎么樣好就怎么做,結(jié)果反而更好。這件事給我?guī)硪恍┱軐W(xué)思考,我會(huì)經(jīng)常提醒自己放下執(zhí)念。

龍波:我之前主要從事Computational Ad(計(jì)算廣告行業(yè)),大家都知道,計(jì)算廣告是支撐起整個(gè)互聯(lián)網(wǎng)最重要的商業(yè)模式,前面我也談到過,ChatGPT的擠占了傳統(tǒng)廣告的注意力空間,對(duì)這個(gè)行業(yè)帶來巨大的沖擊,這是挑戰(zhàn)的一面。

反過來,用戶之所以討厭廣告,是因?yàn)檫@些廣告的體驗(yàn)不好,用戶覺得為什么你要讓我看到這些,我不喜歡。但如果,未來AI會(huì)變成你最貼心的的管家,變成鋼鐵俠的賈維斯,那時(shí)廣告可能會(huì)達(dá)到它的最高境界,即完全不損壞用戶體驗(yàn),我給你的就是你最需要的東西,也許ChatGPT真能做到這一點(diǎn),這會(huì)是一個(gè)巨大的機(jī)遇,這是我的一些思考。

險(xiǎn)峰:謝謝幾位,下面是幾位觀眾的留言提問,有人問現(xiàn)在考大學(xué)的話,CS專業(yè)以后還有前途嗎?各位怎么看?

費(fèi)良宏:如果一年之前,我肯定會(huì)鼓勵(lì)他學(xué)習(xí)計(jì)算機(jī)專業(yè),但是今年答案可能就沒那么簡單了,比如經(jīng)濟(jì)環(huán)境改變的裁員問題,包括ChatGPT帶來的沖擊。

但沖擊其實(shí)無處不在,我記得是去年Alpha Fold剛出來的時(shí)候,對(duì)大家沖擊其實(shí)不亞于這一次,我們用一個(gè)簡單的語言模型就能預(yù)測出2萬多種生物蛋白,而且準(zhǔn)確率非常高,整個(gè)分子生物學(xué)的格局都被改變了,背后也是千千萬萬的從業(yè)者受到影響。

所以我是在這么看的,我們不一定要以薪酬高低來選擇自己的行業(yè),而應(yīng)該看按照自己的特長。簡單來說,如果你是基于薪水多才選擇了做程序員,在大變革面前你很難堅(jiān)持下來。但反過來,如果這是興趣專長或愛好,能夠長期堅(jiān)持,我相信在這個(gè)世界當(dāng)中的機(jī)會(huì)無處不在。

回到最初這個(gè)問題上,我不建議大家簡單的把專業(yè)定位在計(jì)算機(jī)或非計(jì)算機(jī)上,而是更大程度上選擇你擅長和喜歡的領(lǐng)域,接下來AI會(huì)和各行各業(yè)發(fā)生連接,如果你有能力把自己的專業(yè)與AI相結(jié)合,可能會(huì)是一個(gè)更有價(jià)值的選擇。

OpenAI 的組織設(shè)計(jì)給創(chuàng)業(yè)者帶來哪些啟示?

險(xiǎn)峰:有觀眾問,未來各巨頭都會(huì)有自己的大模型,所有大模型之間會(huì)不會(huì)趨同?以后差異化會(huì)在哪里?

陶芳波:這個(gè)是一個(gè)很預(yù)測性的問題,可能我也不能完全回答,但我覺得ChatGPT本身需要調(diào)教,這個(gè)調(diào)教的過程里就包含了很多你對(duì)于業(yè)務(wù)的理解,最終的形態(tài)肯定也會(huì)很不一樣。這件事我一個(gè)人的大腦肯定是不夠用的,現(xiàn)在全世界無數(shù)的人都在想大模型的下一個(gè)形態(tài)是什么?我覺得可以多關(guān)注一些行業(yè)動(dòng)態(tài),我相信一定有人已經(jīng)在做類似的事情。

險(xiǎn)峰:有觀眾問到,OpenAI團(tuán)隊(duì)和組織框架設(shè)計(jì)上的一些獨(dú)特之處,是否對(duì)他們的成功產(chǎn)生了影響?

龍波:我可能剛才提到過一點(diǎn),對(duì)于創(chuàng)新型企業(yè),堅(jiān)持是其中一個(gè)非常重要的品質(zhì)。做出ChatGPT要調(diào)用大量的資源,對(duì)一家小企業(yè)來說其實(shí)是很困難的,另外站在當(dāng)時(shí)看,技術(shù)路徑也遠(yuǎn)不如現(xiàn)在清晰,所以他們選擇了一個(gè)非常獨(dú)特的非盈利組織架構(gòu),就是不想被短期商業(yè)利益所脅迫,這讓創(chuàng)始團(tuán)隊(duì)在早期就打下了一個(gè)比較深厚的技術(shù)烙印。

所以你看這次王慧文老師出來創(chuàng)業(yè),也是要做一家關(guān)注技術(shù)創(chuàng)新,而不是短時(shí)間內(nèi)商業(yè)變現(xiàn)的企業(yè),我想這可能是OpenAI對(duì)我們的啟發(fā),要堅(jiān)持長期主義,更加集中注意力,真正做出一些有深度的東西。

陶芳波:非常同意龍波總說的,可能我倆都屬于AI科班出身,會(huì)非常有共鳴。我覺得OpenAI的成功,跟團(tuán)隊(duì)成員都有著非常強(qiáng)烈的技術(shù)信仰有關(guān),他們相信這件事情一定能成,在5年前剛開始做GPT1的時(shí)候,他們就堅(jiān)信,只要把自回歸的大語言模型做到極致,就一定能可以做出AGI,所以才能一直堅(jiān)持下來。

其實(shí)在GPT3出來之前,根本沒人在乎他們,大家都覺得,這些東西我們也能做,但GPT3出來之后,那些大廠才開始追隨他們?nèi)ジM(jìn),但此時(shí)他們已經(jīng)繼續(xù)再往前推了。所以我想說,堅(jiān)持當(dāng)然不一定能成功的,99%的堅(jiān)持最后可能也都是失敗的,但如果不堅(jiān)持,至少就不會(huì)像他們那么成功。凡是取得巨大成功的人,一定是堅(jiān)持下來的人,人有時(shí)候是要對(duì)抗全世界的,我覺得這種感覺真的會(huì)特別好。

題圖來自:Midjourney

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多