?八年級(jí)數(shù)學(xué)上冊(cè) 與三角形有關(guān)的線段(概念 分類 三邊關(guān)系)基礎(chǔ)知識(shí) 重點(diǎn)題型 (附答案解析) ?—————————————— 三角形角與角的關(guān)系: ① 三角形內(nèi)角和定理:三角形的內(nèi)角和等于180° ② 三角形的外角性質(zhì): <a>三角形的外角和等于360° <b>三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和 <c>三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角 三角形具有穩(wěn)定性,而四邊形不具有穩(wěn)定性. ————————————————— 例題 在三角形中,下列說法中錯(cuò)誤的( ) A. 至少有兩個(gè)銳角 B. 最多能有兩個(gè)鈍角 C. 至多有一個(gè)直角 D. 最多能有三個(gè)銳角 解析 三角形內(nèi)角和為,所以最多有一個(gè)鈍角. 總結(jié) 考察學(xué)生對(duì)于銳角,鈍角以及直角的概念的理解. ————————————————— 例題 (1) 在△ABC中,∠C=90°,∠A=50°,則∠B=________; (2) 在△ABC中,若∠A:∠B:∠C=1:2:3,則∠A+∠B=_______. 解析 (1)因?yàn)椋螩=90°,∠A=50°,所以∠B=40° (2)設(shè)∠A=X ∠B=2X ∠C=3X 則∠A+∠B+∠C=X+2X+3X=180° 解得X=30°,所以∠A+∠B=3X=90° 總結(jié) 考察三角形內(nèi)角和為的運(yùn)用,第二小問注意利用設(shè)未知數(shù)解題. ————————————————— 例題 (1)一個(gè)三角形中,若其中一個(gè)內(nèi)角等于另外兩個(gè)內(nèi)角的和,那么這個(gè)三角形一定是_________; (2)任意一個(gè)三角形至少有________個(gè)銳角. 直角三角形,2 解析 (1)因?yàn)槿切蔚膬?nèi)角和為180°,所以有一個(gè)角是90°;(2)三角形內(nèi)角和為180°,所以只能有一個(gè)鈍角或直角,其余兩個(gè)均為銳角. 總結(jié) 考察三角形的分類及內(nèi)角和定理的運(yùn)用. ————————————————— 例題 △ABC中,∠A-∠B=2∠B-∠C=20°,求∠A、∠B和∠C. ∠A=65° ∠B=45° ∠C=70° 解析 設(shè)∠B=X ∠A=20°+X ∠C=2X-20° 由三角形內(nèi)角和定理,可得20°+X+X+2X-20°=180° 解得X=45° 所以∠A=65° ∠B=45° ∠C=70° 總結(jié) 考察三角形的內(nèi)角和為180°的運(yùn)用,注意設(shè)未知數(shù)進(jìn)行解答. ————————————————— 例題 ————————————————— 例題 ————————————————— 例題 ————————————————— |
|