1.(2010年高考天津卷)設(shè)a=log54,b=(log53)2,c=log45,則( ) A.a(chǎn)<c<b B.b<c<a C.a(chǎn)<b<c D.b<a<c 解析:選D.a=log54<1,log53<log54<1,b=(log53)2<log53,c=log45>1,故b<a<c. 2.已知f(x)=loga|x-1|在(0,1)上遞減,那么f(x)在(1,+∞)上( ) A.遞增無最大值 B.遞減無最小值 C.遞增有最大值 D.遞減有最小值 解析:選A.設(shè)y=logau,u=|x-1|. x∈(0,1)時,u=|x-1|為減函數(shù),∴a>1. ∴x∈(1,+∞)時,u=x-1為增函數(shù),無最大值. ∴f(x)=loga(x-1)為增函數(shù),無最大值. 3.已知函數(shù)f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值與最小值之和為loga2+6,則a的值為( ) A.12 B.14 C.2 D.4 解析:選C.由題可知函數(shù)f(x)=ax+logax在[1,2]上是單調(diào)函數(shù),所以其最大值與最小值之和為f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2. 4.函數(shù)y=log13(-x2+4x+12)的單調(diào)遞減區(qū)間是________. 解析:y=log13u,u=-x2+4x+12. 令u=-x2+4x+12>0,得-2<x<6. ∴x∈(-2,2]時,u=-x2+4x+12為增函數(shù), ∴y=log13(-x2+4x+12)為減函數(shù). 答案:(-2,2] 1.若loga2<1,則實數(shù)a的取值范圍是( ) A.(1,2) B.(0,1)∪(2,+∞) C.(0,1)∪(1,2) D.(0,12) 解析:選B.當(dāng)a>1時,loga2<logaa,∴a>2;當(dāng)0<a<1時,loga2<0成立,故選B. 2.若loga2<logb2<0,則下列結(jié)論正確的是( ) A.0<a<b<1 B.0<b<a<1 C.a(chǎn)>b>1 D.b>a>1 解析:選B.∵loga2<logb2<0,如圖所示, ∴0<b<a<1. 3.已知函數(shù)f(x)=2log12x的值域為[-1,1],則函數(shù)f(x)的定義域是( ) A.[22,2] B.[-1,1] C.[12,2] D.(-∞,22]∪[2,+∞) 解析:選A.函數(shù)f(x)=2log12x在(0,+∞)上為減函數(shù),則-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o m 解得22≤x≤2. 4.若函數(shù)f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為( ) A.14 B.12 C.2 D.4 解析:選B.當(dāng)a>1時,a+loga2+1=a,loga2=-1,a=12,與a>1矛盾; 當(dāng)0<a<1時,1+a+loga2=a, loga2=-1,a=12. 5.函數(shù)f(x)=loga[(a-1)x+1]在定義域上( ) A.是增函數(shù) B.是減函數(shù) C.先增后減 D.先減后增 解析:選A.當(dāng)a>1時,y=logat為增函數(shù),t=(a-1)x+1為增函數(shù),∴f(x)=loga[(a-1)x+1]為增函數(shù);當(dāng)0<a<1時,y=logat為減函數(shù),t=(a-1)x+1為減函數(shù), ∴f(x)=loga[(a-1)x+1]為增函數(shù). 6.(2009年高考全國卷Ⅱ)設(shè)a=lge,b=(lg e)2,c=lg e,則( ) A.a(chǎn)>b>c B.a(chǎn)>c>b C.c>a>b D.c>b>a 解析:選B.∵1<e<3,則1<e<e<e2<10, ∴0<lg e<1.則lg e=12lg e<lg e,即c<a. ∵0<lg e<1,∴(lg e)2<lg e,即b<a. 又c-b=12lg e-(lg e)2=12lg e(1-2lg e) =12lg e·lg10e2>0,∴c>b,故選B. 7.已知0<a<1,0<b<1,如果alogb(x-3)<1,則x的取值范圍是________. 解析:∵0<a<1,alogb(x-3)<1,∴l(xiāng)ogb(x-3)>0. 又∵0<b<1,∴0<x-3<1,即3<x<4. 答案:3<x<4 8.f(x)=log21+xa-x的圖象關(guān)于原點對稱,則實數(shù)a的值為________. 解析:由圖象關(guān)于原點對稱可知函數(shù)為奇函數(shù), 所以f(-x)+f(x)=0,即 log21-xa+x+log21+xa-x=0?log21-x2a2-x2=0=log21, 所以1-x2a2-x2=1?a=1(負根舍去). 答案:1 9.函數(shù)y=logax在[2,+∞)上恒有|y|>1,則a取值范圍是________. 解析:若a>1,x∈[2,+∞),|y|=logax≥loga2,即loga2>1,∴1<a<2;若0<a<1,x∈[2,+∞),|y|=-logax≥-loga2,即-loga2>1,∴a>12,∴12<a<1. 答案:12<a<1或1<a<2 10.已知f(x)=?6-a?x-4a?x<1?logax ?x≥1?是R上的增函數(shù),求a的取值范圍. 解:f(x)是R上的增函數(shù), 則當(dāng)x≥1時,y=logax是增函數(shù), ∴a>1. 又當(dāng)x<1時,函數(shù)y=(6-a)x-4a是增函數(shù). ∴6-a>0,∴a<6. 又(6-a)×1-4a≤loga1,得a≥65. ∴65≤a<6. 綜上所述,65≤a<6. 11.解下列不等式. (1)log2(2x+3)>log2(5x-6); (2)logx12>1. 解:(1)原不等式等價于2x+3>05x-6>02x+3>5x-6, 解得65<x<3, 所以原不等式的解集為(65,3). (2)∵logx12>1?log212log2x>1?1+1log2x<0 ?log2x+1log2x<0?-1<log2x<0 ?2-1<x<20x>0?12<x<1. ∴原不等式的解集為(12,1). 12.函數(shù)f(x)=log12(3x2-ax+5)在[-1,+∞)上是減函數(shù),求實數(shù)a的取值范圍. 解:令t=3x2-ax+5,則y=log12t在[-1,+∞)上單調(diào)遞減,故t=3x2-ax+5在[-1,+∞)單調(diào)遞增,且t>0(即當(dāng)x=-1時t>0). 因為t=3x2-ax+5的對稱軸為x=a6,所以a6≤-18+a>0?a≤-6a>-8?-8<a≤-6. |
|
來自: zd山笑 > 《高一數(shù)學(xué)》