志愿填報(bào)指南等
www.jinghua.com 高二數(shù)學(xué)解三角形知識點(diǎn)梳理: 解三角形就是由三角形的一些元素推出三角形的另一些元素。一般來說,三角形有三條邊和三個(gè)角共六個(gè)元素,直角三角形特殊一些,因?yàn)樗挠幸恢苯?,我們是已知的,相?dāng)?shù)氖俏鍌€(gè)元素,相對的比較簡單,在初中已經(jīng)學(xué)習(xí),也很基礎(chǔ),在這解三角形知識點(diǎn)梳理中,我們也作為一個(gè)考點(diǎn)復(fù)習(xí)。 第一章解三角形 (一) 解斜三角形 1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各種形式的面積的公式。 2、能解決的四類型的問題:(1)已知兩角和一條邊(2)已知兩邊和夾角(3)已知三邊(4) 已知兩邊和其中一邊的對角。 (二) 解直角三角形 1、解直角三角形的主要定理:在直角三角形ABC中,直角為角C,角A和角B是它的兩銳角,所對的邊a、b、c,(1) 角A和角B的和是90度;(2) 勾股定理:a的平方加上+b的平方=c的平方;(3) 角A的正弦等于a比上c,角A的余弦等于b比上c,角B的正弦等于b比上c,角B的余弦等于a比上c;(4)面積的公式s=ab/2;此外還有射影定理,內(nèi)外切接圓的半徑。 2、解直角三角形的四種類型:(1)已知兩直角邊:根據(jù)勾股定理先求出斜邊,用三角函數(shù)求出兩銳角中的一角,再用互余關(guān)系求出另一角或用三角函數(shù)求出兩銳角中的兩角;(2)已知一直角邊和斜邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1);(3)已知一直角邊和一銳角,可求出另一銳角,運(yùn)用正弦或余弦,算出斜邊,用勾股定理算出另一直角邊;(4)已知斜邊和一銳角,先算出已知角的對邊,根據(jù)勾股定理先求出另一直角邊,問題轉(zhuǎn)化為(1)。 |
|