一次函數(shù) 1.、函數(shù)的解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做函數(shù)的解析式 2.、函數(shù)的圖像 一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象. 3.、描點法畫函數(shù)圖形的一般步驟 第一步:列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值); 第二步:描點(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點);第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點用平滑曲線連接起來)。 4.、函數(shù)的表示方法 列表法:一目了然,使用起來方便,但列出的對應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對應(yīng)規(guī)律。 解析式法:簡單明了,能夠準(zhǔn)確地反映整個變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實際問題中的函數(shù)關(guān)系,不能用解析式表示。 圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關(guān)系。 5、一次函數(shù)的定義 一般地,形如(,是常數(shù),且)的函數(shù),叫做一次函數(shù),其中x是自變量。當(dāng)時,一次函數(shù),又叫做正比例函數(shù)。 ⑴一次函數(shù)的解析式的形式是,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式. ⑵當(dāng),時,仍是一次函數(shù). ⑶當(dāng),時,它不是一次函數(shù). ⑷正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù). 6、正比例函數(shù)及性質(zhì) 一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù). 注:正比例函數(shù)一般形式 y=kx (k不為零) ① k不為零 ② x指數(shù)為1 ③ b取零 當(dāng)k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減?。?/span> (1) 解析式:y=kx(k是常數(shù),k≠0) (2) 必過點:(0,0)、(1,k) (3) 走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過二、四象限 (4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小 (5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸 7、一次函數(shù)及性質(zhì) 一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當(dāng)b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù). 注:一次函數(shù)一般形式 y=kx+b (k不為零) ① k不為零 ②x指數(shù)為1 ③ b取任意實數(shù) 一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(-,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移) (1)解析式:y=kx+b(k、b是常數(shù),k0) (2)必過點:(0,b)和(-,0) (3)走向: k>0,圖象經(jīng)過第一、三象限;k<0,圖象經(jīng)過第二、四象限 b>0,圖象經(jīng)過第一、二象限;b<0,圖象經(jīng)過第三、四象限 直線經(jīng)過第一、二、三象限 直線經(jīng)過第一、三、四象限 直線經(jīng)過第一、二、四象限 直線經(jīng)過第二、三、四象限 (4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小. (5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸. (6)圖像的平移: 當(dāng)b>0時,將直線y=kx的圖象向上平移b個單位; 當(dāng)b<0時,將直線y=kx的圖象向下平移b個單位.
8、一次函數(shù)y=kx+b的圖象的畫法. 根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點:(0,b),.即橫坐標(biāo)或縱坐標(biāo)為0的點.
9、正比例函數(shù)與一次函數(shù)之間的關(guān)系 一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移) 10、正比例函數(shù)和一次函數(shù)及性質(zhì)
11、直線()與()的位置關(guān)系 (1)兩直線平行且 (2)兩直線相交 (3)兩直線重合且 (4)兩直線垂直 12、用待定系數(shù)法確定函數(shù)解析式的一般步驟: ?。?/span>1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式; ?。?/span>2)將x、y的幾對值或圖象上的幾個點的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程; (3)解方程得出未知系數(shù)的值; (4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式. |
|
來自: 昵稱41393370 > 《待分類》