小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

初中數(shù)學(xué)運(yùn)動(dòng)類(lèi)型題

 紫曦唯冪1 2012-10-19

運(yùn)動(dòng)類(lèi)型題  

一、解答題(共5小題)

1、如圖,在四邊形ABCD中,AD∥BC,AE⊥BC于E,且AE=8cm,AD=24cm,CD=10cm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)開(kāi)始沿CB邊以2cm/s的速度運(yùn)動(dòng),P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,t為何值時(shí),四邊形PQCD為等腰梯形?

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 

2、如圖所示,等腰梯形ABCD中,AD∥BC,DF∥AB交BC于F點(diǎn),AE∥BD交FD的延長(zhǎng)線于E點(diǎn).

(1)請(qǐng)指出DC與運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源FE的關(guān)系,并說(shuō)明理由.

(2)你能確定CE與CF的位置關(guān)系嗎?理由是什么?

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

3、如圖,在等腰梯形ABCD中,AB∥CD;AB=9,CD=3,AD=BC=5,DE⊥AB于點(diǎn)E,動(dòng)點(diǎn)M從點(diǎn)A出發(fā)沿線段AB以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā)沿線段BC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng)、設(shè)運(yùn)動(dòng)的時(shí)間為t秒(運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源).

(1)DE的長(zhǎng)為_(kāi)________;

(2)當(dāng)MN∥AD時(shí),求t的值;

(3)試探究:t為何值時(shí),△MNB為等腰三角形.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源 

4、如圖①,等腰梯形ABCD中,AB∥CD,AB=4,CD=9,∠C=60°.

(1)求AD的長(zhǎng);

(2)若動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向終點(diǎn)D運(yùn)動(dòng)(如圖②),在P點(diǎn)運(yùn)動(dòng)的過(guò)程中,△ABP的面積改變了嗎?若改變,請(qǐng)說(shuō)明理由;若沒(méi)有改變,那么△ABP的面積為_(kāi)________;

(3)在(2)的條件下,過(guò)B作BH⊥AP于H(如圖③),若運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,則AP=_________;

(4)在(2)的條件下,若動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),過(guò)點(diǎn)Q作QM∥CD交BC于M(如圖④),探究:四邊形PDQM可能為菱形嗎?若可能,請(qǐng)求出BM的長(zhǎng);若不可能,請(qǐng)說(shuō)明理由.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 5、等腰梯形ABCD中,AD∥BC,點(diǎn)O在梯形ABCD中,連接AO、BO、CO、DO,且BO=CO,如圖所示,

(1)求證:AO=DO;

(2)其余條件都不變,只是點(diǎn)O在梯形外,結(jié)論還成立嗎?請(qǐng)補(bǔ)充完圖形,并說(shuō)明理由.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 

答案與評(píng)分標(biāo)準(zhǔn)

一、解答題(共5小題)

1、如圖,在四邊形ABCD中,AD∥BC,AE⊥BC于E,且AE=8cm,AD=24cm,CD=10cm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向D以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)開(kāi)始沿CB邊以2cm/s的速度運(yùn)動(dòng),P、Q分別從A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,t為何值時(shí),四邊形PQCD為等腰梯形?

 

考點(diǎn):等腰梯形的性質(zhì);全等三角形的判定與性質(zhì);勾股定理。

專(zhuān)題:動(dòng)點(diǎn)型。

分析:作輔助線,作PF⊥BC于F,DG⊥BC于G,由四邊形PQCD為梯形,可證△PQF≌△DGC,QF=CG,由FG=24﹣t,CQ=2t,可將CG表示出來(lái),在Rt△CDG中,運(yùn)用勾股定理可將CG的值求出,從而可求出時(shí)間t.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 解答:

解:作PF⊥BC于F,DG⊥BC于G,如圖所示,

∵四邊形PQCD為等腰梯形,

∴PQ=DC,∠PQF=∠DCG,

∵∠PFQ=∠DGC=90°

∴△PQF≌△DGC,

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 ∴QF=CG,

FG=PD=24﹣t,CQ=2t,CG=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源t﹣12,

在RT△CDG中,CG= 運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=6

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源﹣12=6,

∴t=12,

當(dāng)t=12秒時(shí),四邊形PQCD為等腰梯形.

 

點(diǎn)評(píng):本題主要考查等腰梯形的性質(zhì)的應(yīng)用.

2、如圖所示,等腰梯形ABCD中,AD∥BC,DF∥AB交BC于F點(diǎn),AE∥BD交FD的延長(zhǎng)線于E點(diǎn).

(1)請(qǐng)指出DC與運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源FE的關(guān)系,并說(shuō)明理由.

(2)你能確定CE與CF的位置關(guān)系嗎?理由是什么?

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 考點(diǎn):等腰梯形的性質(zhì)。

分析:(1)由已知可得四邊形ABFD是平行四邊形,四邊形ABDE是平行四邊形,從而得到AB=DE=DF=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源FE.

(2)根據(jù)角之間的關(guān)系我們可以得到∠ECF=90o,即CE⊥CF.

解答:解:

(1)DC=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源FE,理由:AD∥BC,DF∥AB

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

∴四邊形ABFD是平行四邊形

∴AB=DF

由AE∥BD,AB∥DE

∴四邊形ABDE是平行四邊形

∴AB=DE

∴AB=DE=DF=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源FE(6分)

 

(2)CE⊥CF,理由:由(1)得DC=DE∴∠DCE=∠DEC

由DC=DF得∠DFC=∠DCF

又∵∠DEC+∠DCE+∠DFC+∠DCF=180o

∴2(∠DCF+∠DCE)=180o

∴∠DCF+∠DCE=90o

∴∠ECF=90o即CE⊥CF.(6分)

 

點(diǎn)評(píng):此題主要考查了平行四邊形的判定及等腰梯形的性質(zhì),做題時(shí)需對(duì)已知進(jìn)行靈活運(yùn)用.

3、如圖,在等腰梯形ABCD中,AB∥CD;AB=9,CD=3,AD=BC=5,DE⊥AB于點(diǎn)E,動(dòng)點(diǎn)M從點(diǎn)A出發(fā)沿線段AB以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā)沿線段BC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng)、設(shè)運(yùn)動(dòng)的時(shí)間為t秒(運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源).

(1)DE的長(zhǎng)為4;

(2)當(dāng)MN∥AD時(shí),求t的值;

(3)試探究:t為何值時(shí),△MNB為等腰三角形.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 考點(diǎn):等腰梯形的性質(zhì);等腰三角形的判定。

專(zhuān)題:動(dòng)點(diǎn)型。

分析:(1)由等腰梯形可以得出AE的長(zhǎng)度為AB減去CD的一半,根據(jù)勾股定理可以得出DE的長(zhǎng)度.

(2)連接EC,可以得出AD∥CE,即CE∥MN,得出△BMN∽△BEC,根據(jù)對(duì)應(yīng)線段的比例關(guān)系可以得出答案.

(3)要使△MNB為等腰三角形應(yīng)分三種情況討論:①當(dāng)NM=NB時(shí)、②當(dāng)BM=BN時(shí)、③當(dāng)MN=MB時(shí)三種情況下t的值即可.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 解答:解:(1)∵四邊形ABCD是等腰梯形,DE⊥AB于點(diǎn)E,AB∥CD,

∴AE=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源(AB﹣CD)=3,

在Rt△AED中,由勾股定理可得:

∴DE=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=4,

(2)由(1)可得AE=3=CD,連接CE,如右圖所示:

∵AE∥DC且AE=DC,

∴四邊形AECD是平行四邊形,

∴AD=CE且AD∥CE

又∵M(jìn)N∥AD,

∴MN∥CE

∴△BMN∽△BEC,

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,

t秒后,BM=AB﹣2t=9﹣2t,BN=t,BE=6,BC=5

即:運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,t=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 所以,t的值為運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源秒.

(3)在△MNB中,BM=AB﹣2t=9﹣2t,BN=t,

①當(dāng)NM=NB時(shí),MN∥CE,

此時(shí),由(1)知t的值為運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源秒;

②當(dāng)BM=BN時(shí),9﹣2t=t,t=3,

此時(shí),t的值為3秒.

③當(dāng)MN=MB時(shí),過(guò)點(diǎn)M作MH⊥BC于H,過(guò)點(diǎn)C作CG⊥AB于G,如右圖所示:

∵∠B=∠B,∠MHB=∠CGB

∴△BMH∽△BCG

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,即:運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,t=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,

所以,此時(shí)t的值為:運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

所以,當(dāng)t=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源秒,t=3秒,t=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源秒時(shí),△MNB為等腰三角形.

點(diǎn)評(píng):本題主要考查了等腰梯形的性質(zhì),注意分類(lèi)討論的運(yùn)用,用到的知識(shí)點(diǎn)有平行四邊形的性質(zhì)、全等三角形的性質(zhì)和判定及平行線的性質(zhì)等.

4、如圖①,等腰梯形ABCD中,AB∥CD,AB=4,CD=9,∠C=60°.

(1)求AD的長(zhǎng);

(2)若動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CD方向向終點(diǎn)D運(yùn)動(dòng)(如圖②),在P點(diǎn)運(yùn)動(dòng)的過(guò)程中,△ABP的面積改變了嗎?若改變,請(qǐng)說(shuō)明理由;若沒(méi)有改變,那么△ABP的面積為5運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源;

(3)在(2)的條件下,過(guò)B作BH⊥AP于H(如圖③),若運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,則AP=運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源;

(4)在(2)的條件下,若動(dòng)點(diǎn)Q同時(shí)以相同速度從點(diǎn)D出發(fā)沿DA方向向終點(diǎn)A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),過(guò)點(diǎn)Q作QM∥CD交BC于M(如圖④),探究:四邊形PDQM可能為菱形嗎?若可能,請(qǐng)求出BM的長(zhǎng);若不可能,請(qǐng)說(shuō)明理由.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

考點(diǎn):等腰梯形的性質(zhì)。

專(zhuān)題:動(dòng)點(diǎn)型;探究型。

分析:(1)過(guò)點(diǎn)A作AE∥BC,可以得出ABCE是平行四邊形,即得出AE=BC,繼而得出△AED是正三角形,有AB=4,CD=9,可以得出答案.

(2)過(guò)點(diǎn)A作AE⊥CD于點(diǎn)E,作圖可以得出∠2=30°,根據(jù)三角函數(shù)的性質(zhì)以及勾股定理可以分別求出ED和AE的數(shù)值,有AB的值,根據(jù)面積公式求解即可.

(3)△ABP的面積有兩種表示方法,根據(jù)(2)中求得的面積,又知道BH的長(zhǎng)度,即可得出AP的值.

(4)作出圖形,由MQ∥PD,得出當(dāng)MQ=PD時(shí),四邊形PDQM是平行四邊形,當(dāng)QD=PD時(shí),四邊形PDQM是菱形,進(jìn)而得出∠1=∠C=60°,即△CMP和△DPQ均為正三角形,可以求得CM=CP=4.5,過(guò)點(diǎn)B作BE∥AD交CD于點(diǎn)E,則四邊形ABED是平行四邊形,得出△BCE是正三角形,進(jìn)而得出當(dāng)MQ=PD=QD時(shí),四邊形PDQM是菱形,此時(shí)BM的長(zhǎng)為0.5.

解答:解:(1)過(guò)點(diǎn)A作AE∥BC交CD于點(diǎn)E,則四邊形ABCE是平行四邊形,

∴AE=BC,

∵等腰梯形ABCD中,AD=BC,

∴AE=AD,

∵∠1=∠C=60°,

∴△AED是正三角形,

∴AD=DE,

∵CE=AB=4,CD=9,

∴ED=DC﹣DE=5,

∴AD=5.

 

(2)△ABP的面積不變,理由:過(guò)點(diǎn)A作AE⊥CD于點(diǎn)E,

由(1)得正△ADE中∠D=60°,

∴∠2=90°﹣∠D=30°,

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 ∴運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

故△ABP的面積為運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源 

(3)由(2)得運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,而B(niǎo)H⊥AP,

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 

(4)當(dāng)MQ=PD=QD時(shí),四邊形PDQM是菱形,此時(shí)BM的長(zhǎng)為0.5.

理由:∵M(jìn)Q∥PD,

∴當(dāng)MQ=PD時(shí),四邊形PDQM是平行四邊形,

∴當(dāng)QD=PD時(shí),四邊形PDQM是菱形,

∴MP∥

=QD,

∴∠1=∠D.

∵等腰梯形中,∠D=∠C=60°,

∴∠1=∠C=60°,

∴△CMP和△DPQ均為正三角形,且邊長(zhǎng)相等.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源,

∴CM=CP=4.5.

過(guò)點(diǎn)B作BE∥AD交CD于點(diǎn)E,則四邊形ABED是平行四邊形,

∴BE=AD.

∵BC=AD,

∴BC=BE,

∴△BCE是正三角形,

∴BC=CE,

∵ED=AB=4,CD=9,

∴BC=CE=CD﹣AB=5,

∴BM=BC﹣CM=0.5.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

 點(diǎn)評(píng):本題考查了等腰梯形的性質(zhì),要能夠清楚地弄懂題意,合理的作出輔助線是做題的關(guān)鍵.

5、等腰梯形ABCD中,AD∥BC,點(diǎn)O在梯形ABCD中,連接AO、BO、CO、DO,且BO=CO,如圖所示,

(1)求證:AO=DO;

(2)其余條件都不變,只是點(diǎn)O在梯形外,結(jié)論還成立嗎?請(qǐng)補(bǔ)充完圖形,并說(shuō)明理由.

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

考點(diǎn):等腰梯形的性質(zhì);全等三角形的判定與性質(zhì)。

專(zhuān)題:證明題。

分析:(1)如圖,梯形ABCD是等腰梯形,則AB=CD,∠ABC=∠DCB,又OB=OC,所以∠OBC=∠OCB,易證△ABO≌△DCO,即可證得;

(2)由(1)得AB=CD,∠ABC=∠DCB,又OB=OC,所以∠OBC=∠OCB,同理易證△ABO≌△DCO,即可證得;

解答:(1)證明:∵在等腰梯形ABCD中,AB=DC,

∴∠ABC=∠DCB,

又∵BO=CO,

∴∠OBC=∠OCB,

∴∠ABO=∠DCO,

∴△ABO≌△DCO(SAS),

運(yùn)動(dòng)類(lèi)型題 - tai.zhang.2007 - 生命之源

∴AO=OD;

 

(2)成立;理由如下:

證明:∵在等腰梯形ABCD中,AB=DC,

∴∠ABC=∠DCB,

又∵BO=CO,

∴∠OBC=∠OCB,

∴∠ABO=∠DCO,

∴△ABO≌△DCO(SAS),

∴AO=OD.

點(diǎn)評(píng):本題主要考查了等腰三角形的性質(zhì)和全等三角形的判定與性質(zhì),證明三角形全等是證明邊或角相等的常用方法,證明全等時(shí),注意選擇恰當(dāng)?shù)呐卸l件.

 

 

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶(hù)發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶(hù) 評(píng)論公約

    類(lèi)似文章 更多