小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

MATLAB矩陣及其運(yùn)算

 輕心 2010-05-05

2  MATLAB矩陣及其運(yùn)算
2.1 
變量和數(shù)據(jù)操作
2.2  MATLAB
矩陣
2.3  MATLAB
運(yùn)算
2.4 
矩陣分析
2.5 
矩陣的超越函數(shù)
2.6 
字符串
2.7 
結(jié)構(gòu)數(shù)據(jù)和單元數(shù)據(jù)
2.8 
稀疏矩陣

2.1  變量和數(shù) 據(jù)操作

2.1.1  變量與賦值
1
.變量命名
MATLAB 6.5中,變量名是以字母開(kāi) 頭,后接字母、數(shù)字或下劃線的字符序列,最多63個(gè)字符。在MATLAB中,變量名區(qū)分字母的大小寫。

2.賦值語(yǔ)句
(1)
變量=表達(dá)式 
(2)
表達(dá)式
其中表達(dá)式是用運(yùn)算符將有關(guān)運(yùn)算量連接起來(lái)的式子,其結(jié)果是一個(gè)矩陣。

2-1  計(jì)算表達(dá)式的值,并顯示計(jì)算結(jié)果。
MATLAB命令窗口輸入命令:
x=1+2i;
y=3-sqrt(17);
z=(cos(abs(x+y))-sin(78*pi/180))/(x+abs(y))
其中pii都是MATLAB預(yù)先定義的變量,分別代表代表圓周率π和虛數(shù)單位。
輸出結(jié)果是:
z =
   -0.3488 + 0.3286i

    2.1.2  預(yù)定義變量

MATLAB工作空間中,還駐留幾個(gè)由系統(tǒng) 本身定義的變量。例如,用pi表示圓周率π的近似值,用ij表示虛數(shù)單位。
預(yù)定義變量有特定的含義,在使用時(shí),應(yīng)盡量避免對(duì)這些變量重新賦值。

2.1.3  內(nèi)存變量的管理
1
.內(nèi)存變量的刪除與修改
MATLAB
工作空間窗口專門用 于內(nèi)存變量的管理。在工作空間窗口中可以顯示所有內(nèi)存變量的屬性。當(dāng)選中某些變量后,再單擊Delete按鈕,就能刪除這些變量。當(dāng)選中某些變量后,再單擊Open按鈕,將進(jìn)入變量編輯器。通過(guò)變量編 輯器可以直接觀察變量中的具體元素,也可修改變量中的具體元素。

clear命令用于刪除MATLAB工作空間中的變量。whowhos這兩個(gè)命令用于顯示在MATLAB工作空間中已經(jīng)駐留的變量名清單。who命令只顯示出駐留變量的名稱,whos在給出變量名的同時(shí),還給出它們的大小、所占字節(jié)數(shù)及數(shù)據(jù)類型等信息。

2.內(nèi)存變量文件
利用MAT文件可以把當(dāng)前MATLAB工作空間中的一些有用變量長(zhǎng)久地保留下來(lái),擴(kuò)展名是.matMAT文件的生成和裝入由saveload命令來(lái)完成。常用格式為:
save
文件名 [變量名表]  [-append][-ascii]
load
文件名  [變量名表]  [-ascii]

其中,文件 名可以帶路徑,但不需帶擴(kuò)展名.mat,命令隱含一定對(duì).mat文件進(jìn)行操作。變量名表中的變量個(gè)數(shù)不限,只要內(nèi)存或文件中存在即可,變量名之間以空格分隔。當(dāng)變 量名表省略時(shí),保存或裝入全部變量。-ascii選項(xiàng)使文件以ASCII格式處理,省略該選項(xiàng)時(shí)文件將以二進(jìn)制格式處理。save命令中的-append選項(xiàng)控制將變量追加到MAT文件中。

2.1.4  MATLAB常用數(shù)學(xué)函數(shù)
MATLAB
提供了許多數(shù)學(xué)函 數(shù),函數(shù)的自變量規(guī)定為矩陣變量,運(yùn)算法則是將函數(shù)逐項(xiàng)作用于矩陣的元素上,因而運(yùn)算的結(jié)果是一個(gè)與自變量同維數(shù)的矩陣。
函數(shù)使用說(shuō)明:
(1)
三角函數(shù)以弧度為單位計(jì) 算。
(2) abs
函數(shù)可以求實(shí)數(shù)的絕對(duì)值、復(fù)數(shù)的模、字符串的ASCII碼值。
(3)
用于取整的函數(shù)有fix、floorceil、round,要注意它們的區(qū)別。
(4) rem
mod函數(shù)的區(qū)別。rem(x,y)mod(x,y)要求x,y必須為相同大小的實(shí)矩陣或?yàn)闃?biāo)量。

2.1.5  數(shù)據(jù)的輸出格式
    MATLAB
用十進(jìn)制數(shù)表示一個(gè)常數(shù),具體可采用日常記數(shù)法和科學(xué)記數(shù)法兩種表示方法。
   
在一般情況下,MATLAB內(nèi)部每一個(gè)數(shù)據(jù)元素都是用雙精度數(shù)來(lái)表示和存儲(chǔ)的。數(shù)據(jù)輸出時(shí)用戶可以用format命令設(shè)置或改變數(shù)據(jù)輸出格式。format命令的格式為:
    format 
格式符
其中格式符決定數(shù)據(jù)的輸出格式

2.2  MATLAB矩陣

2.2.1  矩陣的建立
1
.直接輸入法
   
最簡(jiǎn)單的建立矩陣的方法是從鍵盤直接輸入矩陣的元素。具體方法如下:將矩陣的元素用方括號(hào)括起來(lái),按 矩陣行的順序輸入各元素,同一行的各元素之間用空格或逗號(hào)分隔,不同行的元素之間用分號(hào)分隔。

2.利用M文件建立矩陣
   
對(duì)于比較大且比較復(fù)雜的矩陣, 可以為它專門建立一個(gè)M文件。下面通過(guò)一個(gè)簡(jiǎn)單例子來(lái)說(shuō)明如何利用M文件創(chuàng)建矩陣。

    2-2  利用M文件建立MYMAT矩陣。
(1)
啟動(dòng)有關(guān)編輯程序或MATLAB文本編輯器,并輸入待建矩陣:
(2)
把輸入的內(nèi)容以純文本方式存盤(設(shè)文件名為mymatrix.m)。
(3)
MATLAB命令窗口中輸入mymatrix,即運(yùn)行該M文件,就會(huì)自動(dòng)建立一個(gè)名為MYMAT的矩陣,可供以后使用。

3.利用冒號(hào)表達(dá)式建立一個(gè)向量
   
冒號(hào)表達(dá)式可以產(chǎn)生一個(gè)行向量,一般格式是:
    e1:e2:e3
其中e1為初始值,e2為步長(zhǎng),e3為終止值。
MATLAB中,還可以用linspace函數(shù)產(chǎn)生行向量。其調(diào)用格式為:
linspace(a,b,n)
其中ab是生成向量的第一個(gè)和最后一個(gè)元素,n是元素總數(shù)。
顯然,linspace(a,b,n)a:(b-a)/(n-1):b等價(jià)。
4
.建立大矩陣
大矩陣可由方括號(hào)中的小矩陣或向量建立起來(lái)。

2.2.2  矩陣的拆分
1
.矩陣元素
   
通過(guò)下標(biāo)引用矩陣的元素,例如
A(3,2)=200
采用矩陣元素的序號(hào)來(lái)引用矩陣元素。矩陣 元素的序號(hào)就是相應(yīng)元素在內(nèi)存中的排列順序。在MATLAB中,矩陣元素按列存儲(chǔ),先第一列,再第二列,依次類推。例如
A=[1,2,3;4,5,6];
A(3)
ans =
     2
顯然,序號(hào)(Index)與下標(biāo)(Subscript )是一一對(duì)應(yīng)的,以m×n矩陣A為例,矩陣元素A(i,j)的序號(hào)為(j-1)*m+i。其相互轉(zhuǎn)換關(guān)系也可利 用sub2indind2sub函數(shù)求得。

2.矩陣拆分
    (1)
利用冒號(hào)表達(dá)式獲得子 矩陣
       
A(:,j)表示取A矩陣的第j列全部元素;A(i,:)表示A矩陣第i行的全部元素;A(i,j)表示取A矩陣第i行、第j列的元素。
       
A(i:i+m,:)表示取A矩陣第ii+m行的全部元素;A(:,k:k+m)表示取A矩陣第kk+m列的全部元素,A(i:i+m,k:k+m)表示取A矩陣第ii+m行內(nèi),并在第kk+m列中的所有元素。
此外,還可利用一般向量和end運(yùn)算符來(lái)表示矩陣下標(biāo),從而獲得子矩 陣。end表示某 一維的末尾元素下標(biāo)。

    (2) 利用空矩陣刪除矩陣的元素
   
MATLAB中,定義[]為空矩陣。給變量X賦空矩陣的語(yǔ)句為X=[]。注意,X=[]clear X不同,clear是將X從工作空間中刪除,而空矩陣則存在于工作空間中,只是維數(shù)為0

2.2.3  特殊矩陣
1
.通用的特殊矩陣
常用的產(chǎn)生通用特殊矩陣的函數(shù) 有:
zeros
:產(chǎn)生全0矩陣(零 矩陣)。
ones
:產(chǎn)生全1矩陣(幺矩陣)
eye
:產(chǎn)生單位矩陣。
rand
:產(chǎn)生01間均勻分布的隨機(jī)矩陣。
randn
:產(chǎn)生均值為0,方差為1的標(biāo)準(zhǔn)正態(tài)分布隨機(jī)矩陣。

2-3  分別建立3×33×2和與矩陣A同樣大小的零矩陣。
(1)
建立一個(gè)3×3零矩陣。
zeros(3)
(2)
建立一個(gè)3×2零矩陣。
zeros(3,2)
(3)
設(shè)A2×3矩陣,則可以用zeros(size(A))建立一個(gè)與矩陣A同樣大小零矩陣。
A=[1 2 3;4 5 6];    %
產(chǎn)生一個(gè)2×3階矩陣A
zeros(size(A))      %
產(chǎn)生一個(gè)與矩陣A同樣大小的零矩陣

2-4 建立隨機(jī)矩陣:
(1)
在區(qū) 間[20,50]內(nèi)均勻分布的5階隨機(jī)矩陣。
(2)
均值為0.6、方差為0.15階正態(tài)分布隨機(jī)矩陣。
命令如下:
x=20+(50-20)*rand(5)
y=0.6+sqrt(0.1)*randn(5)
此外,常用 的函數(shù)還有reshape(A,m,n),它在矩陣總元素保持不變的前提下,將矩陣A重新排成m×n的二維矩陣。

2.用于專門學(xué)科的特殊矩陣
(1)
魔方矩陣
魔方矩陣有一個(gè)有趣的性質(zhì),其每行、每列及兩條對(duì)角線上的元素和都相等。對(duì)于n階魔方陣,其元素由1,2,3,…,n2n2個(gè)整數(shù)組成。MATLAB提供了求魔方矩陣的函數(shù)magic(n),其功能是生成一個(gè)n階魔方陣。

2-5  101~12525個(gè)數(shù)填入一個(gè)55列的表格中,使其每行每列及對(duì)角線的和均為565
M=100+magic(5)

(2) 范得蒙矩陣
范得蒙(Vandermonde)矩陣最后一列全為1,倒數(shù)第二列為一個(gè)指定的向量,其他各列是其后列與倒數(shù)第二列的點(diǎn)乘積??梢杂靡粋€(gè)指定向量生成一 個(gè)范得蒙矩陣。在MATLAB中,函數(shù)vander(V)生成以向量V為基礎(chǔ)向量的范得蒙矩陣。例如,A=vander([1;2;3;5])即可得到上述范得蒙矩陣。

(3) 希爾伯特矩陣
MATLAB中,生成希爾伯特矩陣的函數(shù)是hilb(n)。
使用一般方法求逆會(huì)因?yàn)樵紨?shù)據(jù)的微小擾動(dòng)而產(chǎn)生不可靠的計(jì)算結(jié)果。MATLAB中,有一個(gè)專門求希爾伯特矩陣的 逆的函數(shù)invhilb(n),其功能是求n階的希爾伯特矩陣的逆矩陣。

2-6  4階希爾伯特矩陣及其逆矩陣。
命令如下:
format rat     %
以有理形式輸出
H=hilb(4)
H=invhilb(4)

(4) 托普利茲矩陣
托普利茲(Toeplitz)矩陣除第一行第一列外,其他每個(gè)元素都與左上角的元素相同。生成托普利茲矩陣的函數(shù)是toeplitz(x,y),它生成一個(gè)以x為第一列,y為第一行的托普利茲矩陣。這里x, y均為向量,兩者不必等長(zhǎng)。toeplitz(x)用向量x生成一個(gè)對(duì)稱的托普利茲矩陣。例如
T=toeplitz(1:6)

(5) 伴隨矩陣
MATLAB
生成伴隨矩陣的函數(shù)是compan(p),其中p是一個(gè)多項(xiàng)式的系數(shù)向量,高次冪系數(shù)排在前,低次冪排在后。例如,為了求多項(xiàng)式的x3-7x+6的伴隨矩陣,可使用命令:
p=[1,0,-7,6];
compan(p)

(6) 帕斯卡矩陣
我們知道,二次項(xiàng)(x+y)n展開(kāi)后的系數(shù)隨n的增大組成一個(gè)三角形表,稱為楊輝三角形。由楊輝三角形表組成的矩陣稱為帕斯卡(Pascal)矩陣。函數(shù)pascal(n)生成一個(gè)n階帕斯卡矩陣。

2-7  (x+y)5的展開(kāi)式。
MATLAB命令窗口,輸入命令:
pascal(6)
矩陣次對(duì)角線上的元素1,5,10,10,5,1即為展開(kāi)式的系 數(shù)。

2.3  MATLAB運(yùn)算
2.3.1
算術(shù)運(yùn)算
1
.基本算術(shù)運(yùn)算
    MATLAB
的基本算術(shù)運(yùn)算有:+()、-()、*()/(右除)、\(左除)^(乘方)。
注意,運(yùn)算是在矩陣意義下進(jìn)行的,單個(gè)數(shù)據(jù)的算術(shù)運(yùn)算只是一種特例。

    (1) 矩陣加減運(yùn)算
   
假定有兩個(gè)矩陣AB,則可以由A+BA-B實(shí)現(xiàn)矩陣的加減運(yùn)算。運(yùn)算規(guī)則是:若AB矩陣的維數(shù)相同,則可以執(zhí)行矩陣的加減運(yùn)算,AB矩陣的相應(yīng)元素相加減。如果AB的維數(shù)不相同,則MATLAB將給出錯(cuò)誤信息,提示用戶兩個(gè)矩陣的維數(shù)不匹配。

    (2) 矩陣乘法 
假定有兩個(gè)矩陣AB,若Am×n矩陣,Bn×p矩陣,則C=A*Bm×p矩陣。

    (3) 矩陣除法
MATLAB中,有兩種 矩陣除法運(yùn)算:\/,分別表示左除和右除。如果A矩陣是非奇異方陣,則A\BB/A運(yùn)算可以實(shí)現(xiàn)。A\B等效于A的逆左乘B矩陣,也就是inv(A)*B,而B/A等效于A矩陣的逆右乘B矩陣,也就是B*inv(A)
對(duì)于含有標(biāo)量 的運(yùn)算,兩種除法運(yùn)算的結(jié)果相同,如3/44\3有相同的值,都等于0.75。又如,設(shè)a=[10.5,25],則a/5=5\a=[2.1000 5.0000]。對(duì)于矩陣來(lái)說(shuō),左除和右除表示兩種不同的除數(shù)矩陣和被 除數(shù)矩陣的關(guān)系。對(duì)于矩陣運(yùn)算,一般A\BB/A。

    (4) 矩陣的乘方
   
一個(gè)矩陣的乘方運(yùn)算可以表示成A^x,要求A為方陣,x為標(biāo)量。
2
.點(diǎn)運(yùn)算
   
MATLAB中,有一種特殊的運(yùn)算,因?yàn)槠溥\(yùn) 算符是在有關(guān)算術(shù)運(yùn)算符前面加點(diǎn),所以叫點(diǎn)運(yùn)算。點(diǎn)運(yùn)算符有.*、./.\.^。兩矩陣進(jìn)行點(diǎn)運(yùn)算是指它們的對(duì)應(yīng)元素進(jìn)行相關(guān)運(yùn)算,要求兩矩陣的維參數(shù)相同。

2.3.2  關(guān)系運(yùn)算
    MATLAB
提供了6種關(guān)系運(yùn)算符:<(小于)<=(小于或等于)、>(大于)>=(大于或等于)、==(等于)、~=(不等于)。它們的含義不難理解,但要注意其書(shū)寫方法與數(shù)學(xué)中的不等式符號(hào)不盡相同。

    關(guān)系運(yùn)算符的運(yùn)算法則為:
    (1)
當(dāng)兩個(gè)比較量是標(biāo)量時(shí),直接比較兩數(shù)的大小。若關(guān)系成立,關(guān)系表達(dá)式結(jié)果為1,否則為0。
    (2)
當(dāng)參與比較的量是兩個(gè)維數(shù)相同的矩陣時(shí),比較是對(duì)兩矩陣相同位置的元素按標(biāo)量關(guān)系運(yùn)算規(guī)則逐個(gè)進(jìn)行, 并給出元素比較結(jié)果。最終的關(guān)系運(yùn)算的結(jié)果是一個(gè)維數(shù)與原矩陣相同的矩陣,它的元素由01組成。

    (3) 當(dāng)參與比較的一個(gè)是標(biāo)量,而另一個(gè)是矩陣時(shí),則 把標(biāo)量與矩陣的每一個(gè)元素按標(biāo)量關(guān)系運(yùn)算規(guī)則逐個(gè)比較,并給出元素比較結(jié)果。最終的關(guān)系運(yùn)算的結(jié)果是一個(gè)維數(shù)與原矩陣相同的矩陣,它的元素由01組成。

    2-8  產(chǎn)生5階隨機(jī)方陣A,其元素為[10,90]區(qū)間的隨機(jī)整數(shù),然后判斷A的元素是否能被3整除。
    (1)
生成5階隨機(jī)方陣A。
A=fix((90-10+1)*rand(5)+10)
    (2)
判斷A的元素是否可以被3整除。
 P=rem(A,3)==0
其中,rem(A,3)是矩陣A的每個(gè)元素除以3的余數(shù)矩陣。此時(shí),0被擴(kuò)展為與A同維數(shù)的零矩陣,P是進(jìn)行等于(==)比較的結(jié)果矩陣。

2.3.3  邏輯運(yùn)算
    MATLAB
提供了3種邏輯運(yùn)算符:&()|()和~()。
   
邏輯運(yùn)算的運(yùn)算法則為:
(1)
在邏輯運(yùn)算中,確認(rèn)非零元 素為真,用1表 示,零元素為假,用0表示。
(2)
設(shè)參與邏輯運(yùn)算的是兩個(gè)標(biāo)量ab,那么,
    a&b  a,b
全為非零時(shí),運(yùn)算結(jié)果為1,否則為0。
    a|b  a,b
中只要有一個(gè)非零,運(yùn)算結(jié)果為1。
   
a  當(dāng)a是零時(shí),運(yùn)算結(jié)果為1;當(dāng)a非零時(shí),運(yùn)算結(jié)果為0。

(3) 若參與邏輯運(yùn)算的是兩個(gè)同維矩陣,那么運(yùn)算將對(duì)矩陣相同位置上的元素按標(biāo)量規(guī)則逐個(gè)進(jìn)行。最終運(yùn)算結(jié) 果是一個(gè)與原矩陣同維的矩陣,其元素由10組成。
(4)
若參與邏輯運(yùn)算的一個(gè)是標(biāo)量,一個(gè)是矩陣,那么運(yùn)算將在標(biāo)量與矩陣中的每個(gè)元素之間按標(biāo)量規(guī)則逐個(gè) 進(jìn)行。最終運(yùn)算結(jié)果是一個(gè)與矩陣同維的矩陣,其元素由10組成。
(5)
邏輯非是單目運(yùn)算符,也服從矩陣運(yùn)算規(guī)則。
(6)
在算術(shù)、關(guān)系、邏輯運(yùn)算中,算術(shù)運(yùn)算優(yōu)先級(jí)最高,邏輯運(yùn)算優(yōu)先 級(jí)最低。

2-9  建立矩陣A,然后找出大于4的元素的位置。
(1)
建立矩陣A
A=[4,-65,-54,0,6;56,0,67,-45,0]
(2)
找出大于4的元素的位置。
find(A>4)

2.4 矩陣分析
2.4.1 
對(duì)角陣與三角陣
1
.對(duì)角陣
只有對(duì)角線上有非0元素的矩陣稱為對(duì)角矩陣,對(duì)角線上的元素相等的對(duì)角矩陣稱為數(shù)量矩陣,對(duì)角線上的元素都為1的對(duì)角矩陣稱為單位矩陣。

(1) 提取矩陣的對(duì)角線元素
設(shè)Am×n矩陣,diag(A)函數(shù)用于提取矩陣A主對(duì)角線元素,產(chǎn)生一個(gè)具有min(m,n)個(gè)元素的列向量。
diag(A)
函數(shù)還有一種形式diag(A,k),其功能是提取第k條對(duì)角線的元素。
(2)
構(gòu)造對(duì)角矩陣
設(shè)V為具有m個(gè)元素的向量,diag(V)將產(chǎn)生一個(gè)m×m對(duì)角矩陣,其主對(duì)角線元素即為向量V的元素。
diag(V)
函數(shù)也有另一種形式diag(V,k),其功能是產(chǎn)生一個(gè)n×n(n=m+)對(duì)角陣,其第k條對(duì)角線的元素即為向量V的元素。

2-10  先建立5×5矩陣A,然后將A的第一行元素乘以1,第二行乘以2,,第五行乘以5。
A=[17,0,1,0,15;23,5,7,14,16;4,0,13,0,22;10,12,19,21,3;...
11,18,25,2,19];
D=diag(1:5);
D*A                %
D左乘A,對(duì)A的每行乘以一個(gè)指定常數(shù)

2.三角陣
三角陣又進(jìn)一步分為上三角陣和下三角陣,所謂上三角陣,即矩陣的對(duì)角線以下的元素全為0的一種矩陣,而下三角陣則是對(duì)角線以上的 元素全為0的一種 矩陣。

(1) 上三角矩陣
求矩陣A的上三角陣的MATLAB函數(shù)是triu(A)。
triu(A)
函數(shù)也有另一種形式triu(A,k),其功 能是求矩陣A的第k條對(duì)角線以上的元素。例如,提取矩陣A的第2條對(duì)角線以上的元素,形 成新的矩陣B
(2)
下三角矩陣
MATLAB中,提取矩陣A的下三角矩陣的函數(shù)是tril(A)tril(A,k),其用法與提取上三角矩陣的函數(shù)triu(A)triu(A,k)完全相 同。

2.4.2  矩陣的轉(zhuǎn)置與旋轉(zhuǎn)
1
.矩陣的轉(zhuǎn)置
轉(zhuǎn)置運(yùn)算符是單撇號(hào)(‘)
2
.矩陣的旋轉(zhuǎn)
利用函數(shù)rot90(A,k)將矩陣A旋轉(zhuǎn)90ºk倍,當(dāng)k1時(shí)可省略。
3.矩陣的左右翻轉(zhuǎn)
對(duì)矩陣實(shí)施左右翻轉(zhuǎn)是將原矩陣的 第一列和最后一列調(diào)換,第二列和倒數(shù)第二列調(diào)換,,依次類推。MATLAB對(duì)矩陣A實(shí)施左右翻轉(zhuǎn)的函數(shù)是fliplr(A)
4
.矩陣的上下翻轉(zhuǎn)
MATLAB
對(duì)矩陣A實(shí)施上下翻轉(zhuǎn)的函數(shù)是flipud(A)。

2.4.3  矩陣的逆與偽逆
1
.矩陣的逆
對(duì)于一個(gè)方陣A,如果存在一個(gè)與其同階的方陣B,使得:
A·B=B·A=I (I
為單位矩 陣)
則 稱BA的逆矩陣,當(dāng)然,A也是B的逆矩陣。
求一個(gè)矩陣的逆是一件非常煩瑣的工 作,容易出錯(cuò),但在MATLAB中,求一個(gè)矩陣的逆非常容易。求方陣A的逆矩陣可調(diào)用函數(shù)inv(A)。
2-11  用求逆矩陣的方法解線性方程組。
Ax=b
其解為:
x=A-1b

2.矩陣的偽逆
如果矩陣A不是一個(gè)方陣,或者A是一個(gè)非滿秩的方陣時(shí),矩陣A沒(méi)有逆矩陣,但可以找到一個(gè)與A的轉(zhuǎn)置矩陣A‘同型的矩陣B,使得:
A·B·A=A
B·A·B=B
此時(shí)稱矩陣B為矩陣A的偽逆,也稱為廣義逆矩陣。在MATLAB中,求一個(gè)矩陣偽逆的函數(shù)是pinv(A)

2.4.4 方陣的行列式
把一個(gè)方陣看作一個(gè)行列式,并對(duì)其按行列式的規(guī)則求值,這個(gè)值就稱為矩陣所對(duì)應(yīng)的行列式的值。在MATLAB中,求方陣A所對(duì)應(yīng)的行列式的值的函數(shù)是det(A)

2.4.5  矩陣的秩與跡
1
.矩陣的秩
矩陣線性無(wú)關(guān)的行數(shù)與列數(shù)稱為矩 陣的秩。在MATLAB中,求矩陣秩的函數(shù)是rank(A)
2
.矩陣的跡
矩陣的跡等于矩陣的對(duì)角線元素之和,也等于矩陣的特征值之和。在MATLAB中,求矩陣的跡的函數(shù)是trace(A)

2.4.6  向量和矩陣的范數(shù)
矩陣或向量的范數(shù)用來(lái)度量矩陣或 向量在某種意義下的長(zhǎng)度。范數(shù)有多種方法定義,其定義不同,范數(shù)值也就不同。

1.向量的3種常用范數(shù)及其計(jì)算函數(shù)
MATLAB中,求向量范數(shù)的函數(shù)為:
(1) norm(V)
norm(V,2):計(jì)算向量V2—范數(shù)。
(2) norm(V,1)
:計(jì)算向量V1—范數(shù)。
(3) norm(V,inf)
:計(jì)算向量V的∞范數(shù)。
2.矩陣的范數(shù)及其計(jì)算函 數(shù)
MATLAB
提供了求3種矩陣范數(shù)的函數(shù),其函數(shù)調(diào)用格式與求向量的范數(shù)的函數(shù)完全相同。

2.4.7  矩陣的條件數(shù)
MATLAB中,計(jì)算矩陣A3種條件數(shù)的函數(shù)是:
(1) cond(A,1)  
計(jì)算A1—范數(shù)下的條件數(shù)。
(2) cond(A)
cond(A,2)   計(jì)算A2—范數(shù)數(shù)下的條件數(shù)。
(3) cond(A,inf)  
計(jì)算A 范數(shù)下的條件數(shù)。

2.4.8  矩陣的特征值與特征向量
MATLAB中,計(jì)算矩陣A的特征值和特征向量的函數(shù)是eig(A),常用的調(diào)用格式有3種:
(1) E=eig(A)
:求矩陣A的全部特征值,構(gòu)成向量E
(2) [V,D]=eig(A)
: 求矩陣A的全部特 征值,構(gòu)成對(duì)角陣D, 并求A的特征向量 構(gòu)成V的列向量。
(3) [V,D]=eig(A,‘nobalance’)
:與第2種格式類似,但第2種格式中先對(duì)A作相似變換后求矩陣A的特征值和特征向量,而格式3直接求矩陣A的特征值和特征向量。

2-12  用求特征值的方法解方程。
3x5-7x4+5x2+2x-18=0
p=[3,-7,0,5,2,-18];
A=compan(p);           %A
的伴隨矩陣
x1=eig(A)              %
A的特征值
x2=roots(p)                 %
直接求多項(xiàng)式p的零點(diǎn)

2.5 矩陣的超越 函數(shù)
1
. 矩陣平方根sqrtm
sqrtm(A)
計(jì)算矩陣A的平方根。
2
.矩陣對(duì)數(shù)logm
logm(A)
計(jì)算矩陣A的自然對(duì)數(shù)。此函數(shù)輸入?yún)?shù)的條件與輸出結(jié) 果間的關(guān)系和函數(shù)sqrtm(A)完全一樣
3
.矩陣指數(shù)expm、expm1expm2、expm3
expm(A)
expm1(A)、expm2(A)expm3(A)的功能都求矩陣指數(shù)eA。
4
.普通矩陣函數(shù)funm
funm(A,‘fun’)
用來(lái)計(jì)算直接作用于矩陣A的由‘fun’指定的超越函數(shù)值。當(dāng)funsqrt時(shí),funm(A,‘sqrt’)可以計(jì)算矩陣A的平方根,與sqrtm(A)的計(jì)算結(jié)果一樣。

2.6  字符串
   
MATLAB中,字符串是用單撇號(hào)括起來(lái)的字符序列。
MATLAB
將字符串當(dāng)作一個(gè)行向量,每個(gè)元素對(duì)應(yīng)一個(gè)字符,其標(biāo)識(shí)方 法和數(shù)值向量相同。也可以建立多行字符串矩陣。

字符串是以ASCII碼形式存儲(chǔ)的。absdouble函數(shù)都可以用來(lái)獲取字符串矩陣所 對(duì)應(yīng)的ASCII碼 數(shù)值矩陣。相反,char函數(shù)可以把ASCII碼矩陣轉(zhuǎn)換為字符串矩陣。

2-13  建立一個(gè)字符串向量,然后對(duì)該向量做如下處理:
(1)
取第15個(gè)字符組成的子字符串。
(2)
將字符串倒過(guò)來(lái)重新排列。
(3)
將字符串中的小寫字母變成相應(yīng)的大寫字母,其余字符不變。
(4)
統(tǒng)計(jì)字符串中小寫字母的 個(gè)數(shù)。

命令如下:
ch=‘ABc123d4e56Fg9’;
subch=ch(1:5)           %
取子字符串
revch=ch(end:-1:1)       %
將字符串倒排
k=find(ch>=‘a’&ch<=‘z’);     %
找小寫字母的位置
ch(k)=ch(k)-(‘a’-‘A’);         %
將小寫字母變成相應(yīng)的大寫字母
char(ch)               
length(k)                  %
統(tǒng)計(jì)小寫字母的個(gè)數(shù)

    與字符串有關(guān)的另一個(gè)重要函數(shù) 是eval,其調(diào)用格式為:
    eval(t)
其中t為字符串。它的作用是 把字符串的內(nèi)容作為對(duì)應(yīng)的MATLAB語(yǔ)句來(lái)執(zhí)行。

2.7  結(jié)構(gòu)數(shù)據(jù) 和單元數(shù)據(jù)
2.7.1 
結(jié)構(gòu)數(shù)據(jù)
1
.結(jié)構(gòu)矩陣的建立與引用
結(jié)構(gòu)矩陣的元素可以是不同的數(shù)據(jù)類型,它能將一組具有不同屬性的數(shù)據(jù)納入到一個(gè)統(tǒng)一的變量名下進(jìn)行 管理。建立一個(gè)結(jié)構(gòu)矩陣可采用給結(jié)構(gòu)成員賦值的辦法。具體格式為:
結(jié)構(gòu)矩陣名.成員名=表達(dá)式
其中表達(dá)式應(yīng)理解為矩陣表達(dá)式。

2.結(jié)構(gòu)成員的修改
可以根據(jù)需要增加或刪除結(jié)構(gòu)的成員。例如要給結(jié)構(gòu)矩陣a增加一個(gè)成員x4,可給a中任意一個(gè)元素增加成員x4
a(1).x4=‘410075’;
但其他成員均為空矩陣,可以使用賦值語(yǔ)句給它賦確定的值。
要?jiǎng)h除結(jié)構(gòu)的成員,則可以使用rmfield函數(shù)來(lái)完成。例如,刪除成員x4
a=rmfield(a,‘x4’);
3
.關(guān)于結(jié)構(gòu)的函數(shù)
除了一般的結(jié)構(gòu)數(shù)據(jù)的操作外,MATLAB還提供了部分函數(shù)來(lái)進(jìn)行結(jié)構(gòu)矩 陣的操作。

2.7.2  單元數(shù)據(jù)
1
.單元矩陣 的建立與引用
建立單元矩陣和一般矩陣相似,只是矩陣元素用大括號(hào)括起來(lái)。
可以用帶有大括 號(hào)下標(biāo)的形式引用單元矩陣元素。例如b{3,3}。單元矩陣的元素可以是結(jié)構(gòu)或單元數(shù)據(jù)。
可以使用celldisp函數(shù)來(lái) 顯示整個(gè)單元矩陣,如celldisp(b)。還可以刪除單元矩陣中的某個(gè)元素。2.關(guān)于單元的函數(shù)
MATLAB
還 提供了部分函數(shù)用于單元的操作。

2.8 稀疏矩陣
2.8.1 
矩陣存儲(chǔ)方式
MATLAB
的矩陣有兩種存儲(chǔ)方式:完全存儲(chǔ)方式和稀疏存儲(chǔ)方式。
1
.完全存儲(chǔ)方式
完全存儲(chǔ)方式是將矩陣的全部元素 按列存儲(chǔ)。以前講到的矩陣的存儲(chǔ)方式都是按這個(gè)方式存儲(chǔ)的,此存儲(chǔ)方式對(duì)稀疏矩陣也適用。

2.稀疏存儲(chǔ)方式
稀疏存儲(chǔ)方式僅存儲(chǔ)矩陣所有的非零元素的值及其位置,即行號(hào)和列號(hào)。在MATLAB中,稀疏存儲(chǔ)方式也是按列存儲(chǔ) 的。
注 意,在講稀疏矩陣時(shí),有兩個(gè)不同的概念,一是指矩陣的0元素較多,該矩陣是一個(gè)具有稀疏特征的矩陣,二是指采用稀疏方式存儲(chǔ)的矩陣。

2.8.2  稀疏存儲(chǔ)方式的產(chǎn)生
1
.將完全存 儲(chǔ)方式轉(zhuǎn)化為稀疏存儲(chǔ)方式
函數(shù)A=sparse(S)將矩陣S轉(zhuǎn)化為稀疏存儲(chǔ)方式的矩陣A。當(dāng)矩陣S是稀疏存儲(chǔ)方式時(shí),則函數(shù)調(diào)用相當(dāng)于A=S。
sparse
函 數(shù)還有其他一些調(diào)用格式:
sparse(m,n)
:生成一個(gè)m×n的所有元素都是0的稀疏矩陣。
sparse(u,v,S)­­
u,v,S3個(gè)等長(zhǎng)的向量。S是要建立的稀疏矩陣的 非0元素,u(i)、v(i)分別是S(i)的行和列下標(biāo),該函數(shù)建立一個(gè)max(u)行、max(v)列并以S為稀疏元素的稀疏矩 陣。
此外,還有一些和稀疏矩陣操作有關(guān)的函數(shù)。例如
[u,v,S]=find(A)
: 返回矩陣A中非0元素的下標(biāo)和元素。這里產(chǎn)生的u,v,S可作為sparse(u,v,S)的 參數(shù)。
full(A)
:返回和稀疏存儲(chǔ)矩陣A對(duì)應(yīng)的完全存儲(chǔ)方式矩陣。

2.產(chǎn)生稀疏存儲(chǔ)矩陣
只把要建立的稀疏矩陣的非0元素及其所在行和列的位置表示出來(lái)后由MATLAB自己產(chǎn)生其稀疏存儲(chǔ),這需要使用spconvert函數(shù)。調(diào)用格式為:
B=spconvert(A)
其中A為一個(gè)m×3m×4的矩陣,其每行表示一個(gè)非0元素,m是非0元素的個(gè)數(shù),A每個(gè)元素的意義是:
(i,1) 
i個(gè)非0元素所在的行。
(i,2) 
i個(gè)非0元素所在的列。
(i,3) 
i個(gè)非0元素值的實(shí)部。
(i,4) 
i個(gè)非0元素值的虛部,若矩陣的全部元素都是實(shí)數(shù), 則無(wú)須第四列。
該函數(shù)將A所描述的一個(gè)稀疏矩陣轉(zhuǎn)化為一個(gè)稀疏存儲(chǔ)矩陣。

2-15  根據(jù)表示稀疏矩陣的矩陣A,產(chǎn)生一個(gè)稀疏存儲(chǔ)方式矩陣B
命令如下:
A=[2,2,1;3,1,-1;4,3,3;5,3,8;6,6,12];
B=spconvert(A)

3.帶狀稀疏存儲(chǔ)矩陣
spdiags函數(shù)產(chǎn)生帶狀稀疏矩陣的稀疏存儲(chǔ),調(diào)用格式是:
A=spdiags(B,d,m,n)
其中,參數(shù)m,n為原帶狀矩陣的行數(shù)與列數(shù)。Br×p階矩陣,這里r=min(m,n),p為原帶狀矩陣所有非零對(duì)角線的條數(shù),矩陣B的第i列即為原帶狀矩陣的第i條非零對(duì)角線。

4.單位矩陣的稀疏存儲(chǔ)
單位矩陣只有對(duì)角線元素為1,其他元素都為0,是一種具有稀疏特征的矩陣。函數(shù)eye產(chǎn)生一個(gè)完全存儲(chǔ)方式的單位矩陣。MATLAB還有一個(gè)產(chǎn)生稀疏存儲(chǔ)方式的單位矩陣的函數(shù),這就是speye。函數(shù)speye(m,n)返回一個(gè)m×n的稀疏存儲(chǔ)單位矩陣。

2.8.3  稀疏矩陣應(yīng)用舉例
稀疏存儲(chǔ)矩陣只是矩陣的存儲(chǔ)方式 不同,它的運(yùn)算規(guī)則與普通矩陣是一樣的。所以,在運(yùn)算過(guò)程中,稀疏存儲(chǔ)矩陣可以直接參與運(yùn)算。當(dāng)參與運(yùn)算的對(duì)象不全是稀疏存儲(chǔ)矩陣時(shí),所得結(jié)果一般是完全 存儲(chǔ)形式。

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多