Laber先天性黑矇(Leber congenital amaurosis, LCA)是一種嚴(yán)重的致盲性遺傳性視網(wǎng)膜疾病,多數(shù)呈常染色體隱性遺傳,患兒通常在出生時或出生后2一3個月就出現(xiàn)嚴(yán)重的視力障礙。 2019年Morgan L. Maeder等發(fā)表“Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10 ”的研究論文,該論文已被在國際知名醫(yī)學(xué)期刊Nature medicine(Q1,IF=26.77)接收并在線發(fā)表。 研究背景:2017年12月10日,F(xiàn)DA批準(zhǔn)了Spark公司AAV基因療法,通過AAV病毒載體,將正確的RPE65基因遞送到視網(wǎng)膜細(xì)胞,從而治療Leber先天性黑蒙2型,該療法售價高達(dá)85萬美元/年。但目前還沒有針對Leber先天性黑蒙10型的治療方法被批準(zhǔn),因為CEP290基因的編碼序列長達(dá)7.5kb,遠(yuǎn)超AAV病毒的包裝能力(4.7kb),無法通過AAV遞送正確編碼的CEP290基因的方式來治療。為克服這一局限,Editas Medicine開發(fā)了一種特異于CEP290 IVS26突變的基因編輯策略,使用AAV5載體通過視網(wǎng)膜下注射將saCas9和CEP290特異性gRNA遞送至感光細(xì)胞,通過雙gRNA分別靶向突變內(nèi)含子區(qū)域的上下游,直接將突變內(nèi)含子區(qū)域整體刪除或倒位,從而恢復(fù)CEP290基因的正常表達(dá)。 CEP290蛋白位于光感受器的連接纖毛,在外界盤再生和光信號傳傳導(dǎo)中起重要作用。LCA10型患者中CEP290最常見的突變是剪切突變IVS26(c.2991+ 1655A>G),這一突變對視網(wǎng)膜光感受細(xì)胞的影響較大,而對其他體細(xì)胞影響輕微,因此臨床表型僅局限于眼部。CEP290包含7.5k個堿基,遠(yuǎn)遠(yuǎn)超過AAV載體的介導(dǎo)能力,為了克服基因替代療法的局限性,研究者通過視網(wǎng)膜下注射的方法,將AAV5載體介導(dǎo)的金黃葡萄球菌Cas9和CEP290特異向?qū)NA(gRNAs)導(dǎo)入光感受器細(xì)胞內(nèi),這種gRNAs可以更正原有的IVS26突變,從而正常剪切,得到CEP290的正常表達(dá),并從以下三個方面證明了該方法(EDIT-101)糾正CEP290 IVS26突變的有效性。 一、人體成纖維細(xì)胞和視網(wǎng)膜組織體外實驗闡明了EDIT-101作用機制人體成纖維細(xì)胞和視網(wǎng)膜組織體外實驗闡明了EDIT-101作用機制,并且 證明了核酸酶的特異性。SaCas9和gRNA(EDIT-101)轉(zhuǎn)染LCA10患者的成纖維細(xì)胞后,野生型CEP290mRNA升高,同時突變型CEP290mRNA降低 ,而且全長的CEP290蛋白表達(dá)增加。EDIT-101轉(zhuǎn)染視網(wǎng)膜組織后,也得到了預(yù)期的編輯效果,平均編輯率約為41.7±15.9% 。而且這種方法特異性很高,都沒有觀察到脫靶效應(yīng)。Fig1 a.EDIT-101的示意圖;Fig1b.基因編輯策略示意圖;c, 定量PCR qRT–PCR檢測體外成纖維細(xì)胞野生型(藍(lán)色)和IVS26突變型(橙色)CEP290 mRNA轉(zhuǎn)錄本;d.人視網(wǎng)膜組織切片的免疫熒光圖片,說明AAV5-hGRK1-GFP體外轉(zhuǎn)染后,在視網(wǎng)膜組織中可以檢測到GFP的表達(dá)。(圖1) 二、建立CEP290 IVS26基因突變敲入小鼠模型建立CEP290 IVS26基因突變敲入小鼠模型,在小鼠模型視網(wǎng)膜下注射EDIT-101,觀察劑量效應(yīng)和藥代動力學(xué),檢測到迅速并且持久的基因編輯效果,而且總體CEP290基因編輯率與 SaCas9 mRNA和gRNA均相關(guān)(圖2)。 圖2.HuCEP290 IVS26敲入小鼠的體內(nèi)編輯效果。a.不同濃度EDIT-101在小鼠視網(wǎng)膜下注射后不同時間點Cas9 mRNA和gRNA的表達(dá);b.不同藥物濃度注射后不同時間點基因編輯的比例;c.CEP290總體基因編輯率和Cas9 mRNA (橙色)、gRNA (藍(lán)色)的相關(guān)性。d.達(dá)到有效CEP290編輯的EDIT-101的劑量反應(yīng)。 三、小鼠缺少黃斑結(jié)構(gòu),而EDIT-101的設(shè)計主要是為了恢復(fù)部分視錐細(xì)胞功能小鼠缺少黃斑結(jié)構(gòu),而EDIT-101的設(shè)計主要是為了恢復(fù)部分視錐細(xì)胞功能,因此研究者又設(shè)計了用于靈長類動物的EDIT-101類似物(VIR026 and VIR067),并在靈長類動物中證明了其對CEP290基因編輯的有效性,達(dá)到了治療效果的閾值,表明 CRISPR/Cas9技術(shù)可以在靈長類動物體細(xì)胞中進(jìn)行有效編輯(圖3)。a-d.靈長類動物黃斑旁視網(wǎng)膜下注射VIR607(治療組)或者平衡鹽溶液(對照組)后,SaCas9僅在治療眼的光感受器細(xì)胞中表達(dá)。 圖3.在處理過非人靈長類模型中,SaCas9的表達(dá)僅限于光感受器 表1不同劑量EDIT-101類似物對小鼠和NHPs的編輯效率 作者還比較了不同濃度劑量的藥物在小鼠和靈長類動物中的基因編輯率,臨床認(rèn)為基因編輯率>10%即能提高患者的視功能,因此從下表可見當(dāng)藥物濃度達(dá)到1*1012vg/ml時,便可顯著超過臨床治療有效的閾值。 研究小結(jié):研究者闡明基因編輯新藥EDIT-101的原理、藥理作用以及耐受性等,為EDIT-101研發(fā)和下一步臨床實驗奠定了基礎(chǔ)。而且這項研究表明EDIT-101在靈長類動物中無明顯免疫反應(yīng),并且沒有觀察到脫靶效應(yīng),安全性好。這項研究不僅可能造福CEP290相關(guān)LCA的患者,而且為其他基因相關(guān)的視網(wǎng)膜變性疾病也提供了新思路。 相關(guān)信息:Leber先天性黑矇(LCA)作為一種重要的視網(wǎng)膜變性類疾病,其發(fā)病早、危害重,給社會帶來了沉重負(fù)擔(dān)。因此也有越來越多的學(xué)者關(guān)注于相關(guān)疾病的研究,其中典型的代表是RPE65相關(guān)LCA的基因替代治療,相關(guān)藥物L(fēng)UXTURNA目前在美國已上市而且表現(xiàn)出良好的治療效果。但是視網(wǎng)膜變性類疾病發(fā)病機制復(fù)雜,很多疾病并不適合套用基因替代治療,比如本文中提到的CEP290,因其堿基數(shù)目龐大,常規(guī)的病毒載體難以介導(dǎo)正常CEP290基因轉(zhuǎn)染。但是CEP290基因有突變熱點,因此本文作者有針對性的設(shè)計了相應(yīng)的基因編輯藥物,可以用于治療因此熱點突變導(dǎo)致的視網(wǎng)膜疾病。我們在受此鼓舞的同時必須清晰的認(rèn)識到,CEP290突變在中國人群中突變率不高,本文提到的熱點突變目前尚未在我國人群中發(fā)現(xiàn),因此此藥很可能不適用于中國的患者。因此針對遺傳性視網(wǎng)膜疾病,我們需要根據(jù)不用的遺傳背景和機制,來研究相應(yīng)的治療方法,不能完全照搬國外的技術(shù),需要因地制宜,因病施藥。 信源: Morgan L, Maeder,Michael, Stefanidakis,Christopher J, Wilson et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10.[J] .Nat Med, 2019, 25: 0. 參考文獻(xiàn) 1. Chang, B. et al. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15, 1847–1857 (2006). 2. Drivas, T. G. & Bennett, J. CEP290 and the primary cilium. Adv. Exp. Med. Biol. 801, 519–525 (2014). 3. Stone, E. M. Leber congenital amaurosis - a model for efcient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 144, 791–811 (2007). 4. Stone, E. M. et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology 124, 1314–1331 (2017). 5. Drivas, T. G., Wojno, A. P., Tucker, B. A., Stone, E. M. & Bennett, J. Basal exon skipping and genetic pleiotropy: a predictive model of disease pathogenesis. Sci. Transl. Med. 7, 291ra297 (2015). 6. den Hollander, A. I. et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am. J. Hum. Genet. 79, 556–561 (2006). 7. Collin, R. W. et al. Antisense oligonucleotide (AON)-based therapy for Leber congenital amaurosis caused by a frequent mutation in CEP290. Mol. Ter. Nucleic Acids 1, e14 (2012). 8. Gerard, X. et al. AON-mediated exon skipping restores ciliation in fbroblasts harboring the common Leber congenital amaurosis CEP290 mutation. Mol. Ter. Nucleic Acids 1, e29 (2012). 9. Parftt, D. A. et al. Identifcation and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 18, 769–781 (2016). 10. Coppieters, F., Lefever, S., Leroy, B. P. & De Baere, E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum. Mutat. 31, 1097–1108 (2010). 11. Boye, S. E. et al. Natural history of cone disease in the murine model of Leber congenital amaurosis due to CEP290 mutation: determining the timing and expectation of therapy. PLoS ONE 9, e92928 (2014). 12. Geller, A. M. & Sieving, P. A. Assessment of foveal cone photoreceptors in Stargardt’s macular dystrophy using a small dot detection task. Vision Res. 33, 1509–1524 (1993). 13. Geller, A. M., Sieving, P. A. & Green, D. G. Efect on grating identifcation of sampling with degenerate arrays. J. Opt. Soc. Am. A. 9, 472–477 (1992). 14. Garanto, A. et al. Unexpected CEP290 mRNA splicing in a humanized knock-in mouse model for Leber congenital amaurosis. PLoS ONE 8, e79369 (2013). 15. Cideciyan, A. V. et al. Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis. Hum. Mutat. 28, 1074–1083 (2007). 16. Cideciyan, A. V. et al. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. Hum. Mol. Genet. 20, 1411–1423 (2011). 17. Boye, S. E. et al. Te human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specifc expression in the primate retina. Hum. Gene Ter. 23, 1101–1115 (2012). 18. LUXTURNA (voretigene neparvovec-rzyl, package insert) (Spark Terapeutics, 2017). 19. Giannoukos, G. et al. UDiTaS, a genome editing detection method for indels and genome rearrangements. BMC Genomics 19, 212 (2018). 20. Burnight, E. R. et al. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ter. 21, 662–672 (2014). 21. Feodorova, Y., Koch, M., Bultman, S., Michalakis, S. & Solovei, I. Quick and reliable method for retina dissociation and separation of rod photoreceptor perikarya from adult mice. MethodsX 2, 39–46 (2015). 22. Niesen, F. H., Berglund, H. & Vedadi, M. Te use of diferential scanning fuorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007). 23. Kim, D. et al. Digenome-seq: genome-wide profling of CRISPR-Cas9 of-target efects in human cells. Nat. Methods 12, 237–243 (2015). 24. Park, J. et al. Digenome-seq web tool for profling CRISPR specifcity. Nat. Methods 14, 548–549 (2017). 25. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profling of of-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015). 26. Friedland, A. E. et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol. 16, 257 (2015). 27. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO J. 17, 10–12 (2011). 28. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). 29. Li, H. et al. Te sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). 30. Bothmer, A. et al. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nat. Commun. 8, 13905 (2017). 31. Kleinstiver, B. P. Engineered CRISPR-Cas9 nucleases with altered PAM specifcities. Nature 523, 481–485 (2015). 32. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential of-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014). END 文案 | 劉衛(wèi)勤 排版 | 姜笑南 審核 | 姜笑南 發(fā)布|姜笑南 世界生命科學(xué)大會 RECRUIT 關(guān)注我們,獲取生命科學(xué) 學(xué)界前沿|促進(jìn)更多的學(xué)術(shù)交流與合作 業(yè)界前沿|促進(jìn)更快的產(chǎn)品創(chuàng)新與應(yīng)用 政策前沿|促進(jìn)更好的治理實踐與發(fā)展
|
|