小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

復(fù)旦NLP團(tuán)隊(duì)發(fā)布80頁(yè)大模型Agent綜述,一文縱覽AI智能體的現(xiàn)狀與未來(lái)

 天承辦公室 2023-09-18

機(jī)器之心專欄

機(jī)器之心編輯部

智能體會(huì)成為打開 AGI 之門的鑰匙嗎?復(fù)旦 NLP 團(tuán)隊(duì)全面探討 LLM-based Agents。
近期,復(fù)旦大學(xué)自然語(yǔ)言處理團(tuán)隊(duì)(FudanNLP)推出 LLM-based Agents 綜述論文,全文長(zhǎng)達(dá) 86 頁(yè),共有 600 余篇參考文獻(xiàn)!作者們從 AI Agent 的歷史出發(fā),全面梳理了基于大型語(yǔ)言模型的智能代理現(xiàn)狀,包括:LLM-based Agent 的背景、構(gòu)成、應(yīng)用場(chǎng)景、以及備受關(guān)注的代理社會(huì)。同時(shí),作者們探討了 Agent 相關(guān)的前瞻開放問(wèn)題,對(duì)于相關(guān)領(lǐng)域的未來(lái)發(fā)展趨勢(shì)具有重要價(jià)值。

圖片

  • 論文鏈接:https:///pdf/2309.07864.pdf
  • LLM-based Agent 論文列表:https://github.com/WooooDyy/LLM-Agent-Paper-List

團(tuán)隊(duì)成員還將為每篇相關(guān)論文添加「一句話概括」,歡迎 Star 倉(cāng)庫(kù)。

研究背景

長(zhǎng)期以來(lái),研究者們一直在追求與人類相當(dāng)、乃至超越人類水平的通用人工智能(Artificial General Intelligence,AGI)。早在 1950 年代,Alan Turing 就將「智能」的概念擴(kuò)展到了人工實(shí)體,并提出了著名的圖靈測(cè)試。這些人工智能實(shí)體通常被稱為 —— 代理(Agent*)?!复怼惯@一概念起源于哲學(xué),描述了一種擁有欲望、信念、意圖以及采取行動(dòng)能力的實(shí)體。在人工智能領(lǐng)域,這一術(shù)語(yǔ)被賦予了一層新的含義:具有自主性、反應(yīng)性、積極性和社交能力特征的智能實(shí)體。

*Agent 術(shù)語(yǔ)的中文譯名并未形成共識(shí),有學(xué)者將其翻譯為智能體、行為體、代理或智能代理,本文中出現(xiàn)的「代理」和「智能代理」均指代 Agent。

從那時(shí)起,代理的設(shè)計(jì)就成為人工智能社區(qū)的焦點(diǎn)。然而,過(guò)去的工作主要集中在增強(qiáng)代理的特定能力,如符號(hào)推理或?qū)μ囟ㄈ蝿?wù)的掌握(國(guó)際象棋、圍棋等)。這些研究更加注重算法設(shè)計(jì)和訓(xùn)練策略,而忽視了模型固有的通用能力的發(fā)展,如知識(shí)記憶、長(zhǎng)期規(guī)劃、有效泛化和高效互動(dòng)等。事實(shí)證明,增強(qiáng)模型固有能力是推動(dòng)智能代理進(jìn)一步發(fā)展的關(guān)鍵因素。

大型語(yǔ)言模型(LLMs)的出現(xiàn)為智能代理的進(jìn)一步發(fā)展帶來(lái)了希望。如果將 NLP 到 AGI 的發(fā)展路線分為五級(jí):語(yǔ)料庫(kù)、互聯(lián)網(wǎng)、感知、具身和社會(huì)屬性,那么目前的大型語(yǔ)言模型已經(jīng)來(lái)到了第二級(jí),具有互聯(lián)網(wǎng)規(guī)模的文本輸入和輸出。在這個(gè)基礎(chǔ)上,如果賦予 LLM-based Agents 感知空間和行動(dòng)空間,它們將達(dá)到第三、第四級(jí)。進(jìn)一步地,多個(gè)代理通過(guò)互動(dòng)、合作解決更復(fù)雜的任務(wù),或者反映出現(xiàn)實(shí)世界的社會(huì)行為,則有潛力來(lái)到第五級(jí) —— 代理社會(huì)。

圖片

作者們?cè)O(shè)想的一個(gè)由智能代理構(gòu)成的和諧社會(huì),人類也可以參與其中。場(chǎng)景取材自《原神》中的海燈節(jié)。

一個(gè) Agent 的誕生

擁有大模型加持的智能代理會(huì)是什么樣?作者們受到達(dá)爾文「適者生存」法則的啟發(fā),提出了基于大模型的智能代理通用框架。一個(gè)人如果想要在社會(huì)中生存,就必須學(xué)會(huì)適應(yīng)環(huán)境,因此需要具有認(rèn)知能力,并且能夠感知、應(yīng)對(duì)外界的變化。同樣,智能代理的框架也由三個(gè)部分組成:控制端(Brain)、感知端(Perception)和行動(dòng)端(Action)。

  • 控制端:通常由 LLMs 構(gòu)成,是智能代理的核心。它不僅可以存儲(chǔ)記憶和知識(shí),還承擔(dān)著信息處理、決策等不可或缺的功能。它可以呈現(xiàn)推理和計(jì)劃的過(guò)程,并很好地應(yīng)對(duì)未知任務(wù),反映出智能代理的泛化性和遷移性。
  • 感知端:將智能代理的感知空間從純文本拓展到包括文本、視覺(jué)和聽(tīng)覺(jué)等多模態(tài)領(lǐng)域,使代理能夠更有效地從周圍環(huán)境中獲取與利用信息。
  • 行動(dòng)端:除了常規(guī)的文本輸出,還賦予代理具身能力、使用工具的能力,使其能夠更好地適應(yīng)環(huán)境變化,通過(guò)反饋與環(huán)境交互,甚至能夠塑造環(huán)境。

圖片

LLM-based Agent 的概念框架,包含三個(gè)組成部分:控制端(Brain)、感知端(Perception)和行動(dòng)端(Action)。

作者們用一個(gè)例子來(lái)說(shuō)明來(lái)了 LLM-based Agent 的工作流程:當(dāng)人類詢問(wèn)是否會(huì)下雨時(shí),感知端(Perception)將指令轉(zhuǎn)換為 LLMs 可以理解的表示。然后控制端(Brain)開始根據(jù)當(dāng)前天氣和互聯(lián)網(wǎng)上的天氣預(yù)報(bào)進(jìn)行推理和行動(dòng)規(guī)劃。最后,行動(dòng)端(Action)做出響應(yīng)并將雨傘遞給人類。

通過(guò)重復(fù)上述過(guò)程,智能代理可以不斷獲得反饋并與環(huán)境交互。

控制端:Brain

控制端作為智能代理最核心的組成成分,作者們從五個(gè)方面展開介紹其能力:

自然語(yǔ)言交互:語(yǔ)言是溝通的媒介,其中包含著豐富的信息。得益于 LLMs 強(qiáng)大的自然語(yǔ)言生成和理解能力,智能代理能夠通過(guò)自然語(yǔ)言與外界進(jìn)行多輪交互,進(jìn)而實(shí)現(xiàn)目標(biāo)。具體而言,可以分為兩個(gè)方面:

  • 高質(zhì)量文本生成:大量評(píng)估實(shí)驗(yàn)表明,LLMs 能夠生成流暢、多樣、新穎、可控的文本。盡管在個(gè)別語(yǔ)言上表現(xiàn)欠佳,但整體上具備良好的多語(yǔ)言能力。
  • 言外之意的理解:除了直觀表現(xiàn)出的內(nèi)容,語(yǔ)言背后可能還傳遞了說(shuō)話者的意圖、偏好等信息。言外之意有助于代理更高效地溝通與合作,大模型已經(jīng)展現(xiàn)出了這方面的潛力。

知識(shí):基于大批量語(yǔ)料訓(xùn)練的 LLMs,擁有了存儲(chǔ)海量知識(shí)(Knowledge)的能力。除了語(yǔ)言知識(shí)以外,常識(shí)知識(shí)和專業(yè)技能知識(shí)都是 LLM-based Agents 的重要組成部分。

雖然 LLMs 其本身仍然存在知識(shí)過(guò)期、幻覺(jué)等問(wèn)題,現(xiàn)有的一些研究通過(guò)知識(shí)編輯或調(diào)用外部知識(shí)庫(kù)等方法,可以在一定程度上得到緩解。

記憶:在本文框架中,記憶模塊(Memory)儲(chǔ)存了代理過(guò)往的觀察、思考和行動(dòng)序列。通過(guò)特定的記憶機(jī)制,代理可以有效地反思并應(yīng)用先前的策略,使其借鑒過(guò)去的經(jīng)驗(yàn)來(lái)適應(yīng)陌生的環(huán)境。

通常用于提升記憶能力的方法有三種:

  • 擴(kuò)展 Backbone 架構(gòu)的長(zhǎng)度限制:針對(duì) Transformers 固有的序列長(zhǎng)度限制問(wèn)題進(jìn)行改進(jìn)。
  • 總結(jié)記憶(Summarizing):對(duì)記憶進(jìn)行摘要總結(jié),增強(qiáng)代理從記憶中提取關(guān)鍵細(xì)節(jié)的能力。
  • 壓縮記憶(Compressing):通過(guò)使用向量或適當(dāng)?shù)臄?shù)據(jù)結(jié)構(gòu)對(duì)記憶進(jìn)行壓縮,可以提高記憶檢索效率。

此外,記憶的檢索方法也很重要,只有檢索到合適的內(nèi)容,代理才能夠訪問(wèn)到最相關(guān)和準(zhǔn)確的信息。

推理 & 規(guī)劃:推理能力(Reasoning)對(duì)于智能代理進(jìn)行決策、分析等復(fù)雜任務(wù)而言至關(guān)重要。具體到 LLMs 上,就是以 思維鏈(Chain-of-Thought,CoT) 為代表的一系列提示方法。而規(guī)劃(Planning)則是面對(duì)大型挑戰(zhàn)時(shí)常用的策略。它幫助代理組織思維、設(shè)定目標(biāo)并確定實(shí)現(xiàn)這些目標(biāo)的步驟。在具體實(shí)現(xiàn)中,規(guī)劃可以包含兩個(gè)步驟:

  • 計(jì)劃制定(Plan Formulation):代理將復(fù)雜任務(wù)分解為更易于管理的子任務(wù)。例如:一次性分解再按順序執(zhí)行、逐步規(guī)劃并執(zhí)行、多路規(guī)劃并選取最優(yōu)路徑等。在一些需要專業(yè)知識(shí)的場(chǎng)景中,代理可與特定領(lǐng)域的 Planner 模塊集成,提升能力。
  • 計(jì)劃反思(Plan Reflection):在制定計(jì)劃后,可以進(jìn)行反思并評(píng)估其優(yōu)劣。這種反思一般來(lái)自三個(gè)方面:借助內(nèi)部反饋機(jī)制;與人類互動(dòng)獲得反饋;從環(huán)境中獲得反饋。

遷移性 & 泛化性:擁有世界知識(shí)的 LLMs 賦予智能代理具備強(qiáng)大的遷移與泛化能力。一個(gè)好的代理不是靜態(tài)的知識(shí)庫(kù),還應(yīng)具備動(dòng)態(tài)的學(xué)習(xí)能力:

  • 對(duì)未知任務(wù)的泛化:隨著模型規(guī)模與訓(xùn)練數(shù)據(jù)的增大,LLMs 在解決未知任務(wù)上涌現(xiàn)出了驚人的能力。通過(guò)指令微調(diào)的大模型在 zero-shot 測(cè)試中表現(xiàn)良好,在許多任務(wù)上都取得了不亞于專家模型的成績(jī)。
  • 情景學(xué)習(xí)(In-context Learning):大模型不僅能夠從上下文的少量示例中進(jìn)行類比學(xué)習(xí),這種能力還可以擴(kuò)展到文本以外的多模態(tài)場(chǎng)景,為代理在現(xiàn)實(shí)世界中的應(yīng)用提供了更多可能性。
  • 持續(xù)學(xué)習(xí)(Continual Learning):持續(xù)學(xué)習(xí)的主要挑戰(zhàn)是災(zāi)難性遺忘,即當(dāng)模型學(xué)習(xí)新任務(wù)時(shí)容易丟失過(guò)往任務(wù)中的知識(shí)。專有領(lǐng)域的智能代理應(yīng)當(dāng)盡量避免丟失通用領(lǐng)域的知識(shí)。

感知端:Perception

人類通過(guò)多模態(tài)的方式感知世界,所以研究者們對(duì) LLM-based Agents 抱有同樣的期待。多模態(tài)感知能加深代理對(duì)工作環(huán)境的理解,顯著提升了其通用性。

文本輸入:作為 LLMs 最基礎(chǔ)的能力,這里不再贅述。

視覺(jué)輸入:LLMs 本身并不具備視覺(jué)的感知能力,只能理解離散的文本內(nèi)容。而視覺(jué)輸入通常包含有關(guān)世界的大量信息,包括對(duì)象的屬性,空間關(guān)系,場(chǎng)景布局等等。常見(jiàn)的方法有:

  • 將視覺(jué)輸入轉(zhuǎn)為對(duì)應(yīng)的文本描述(Image Captioning):可以被 LLMs 直接理解,并且可解釋性高。
  • 對(duì)視覺(jué)信息進(jìn)行編碼表示:以視覺(jué)基礎(chǔ)模型 + LLMs 的范式來(lái)構(gòu)成感知模塊,通過(guò)對(duì)齊操作來(lái)讓模型理解不同模態(tài)的內(nèi)容,可以端到端的方式進(jìn)行訓(xùn)練。

聽(tīng)覺(jué)輸入:聽(tīng)覺(jué)也是人類感知中的重要組成部分。由于 LLMs 有著優(yōu)秀的工具調(diào)用能力,一個(gè)直觀的想法就是:代理可以將 LLMs 作為控制樞紐,通過(guò)級(jí)聯(lián)的方式調(diào)用現(xiàn)有的工具集或者專家模型,感知音頻信息。此外,音頻也可以通過(guò)頻譜圖(Spectrogram)的方式進(jìn)行直觀表示。頻譜圖可以作為平面圖像來(lái)展示 2D 信息,因此,一些視覺(jué)的處理方法可以遷移到語(yǔ)音領(lǐng)域。

其他輸入:現(xiàn)實(shí)世界中的信息遠(yuǎn)不止文本、視覺(jué)和聽(tīng)覺(jué)。作者們希望在未來(lái),智能代理能配備更豐富的感知模塊,例如觸覺(jué)、嗅覺(jué)等器官,用于獲取目標(biāo)物體更加豐富的屬性。同時(shí),代理也能對(duì)周圍環(huán)境的溫度、濕度和明暗程度有清楚的感受,采取更 Environment-aware 的行動(dòng)。

此外,還可以為代理引入對(duì)更廣闊的整體環(huán)境的感知:采用激光雷達(dá)、GPS、慣性測(cè)量單元等成熟的感知模塊。

行動(dòng)端:Action

在大腦做出分析、決策后,代理還需要做出行動(dòng)以適應(yīng)或改變環(huán)境:

文本輸出:作為 LLMs 最基礎(chǔ)的能力,這里不再贅述。

工具使用:盡管 LLMs 擁有出色的知識(shí)儲(chǔ)備和專業(yè)能力,但在面對(duì)具體問(wèn)題時(shí),也可能會(huì)出現(xiàn)魯棒性問(wèn)題、幻覺(jué)等一系列挑戰(zhàn)。與此同時(shí),工具作為使用者能力的擴(kuò)展,可以在專業(yè)性、事實(shí)性、可解釋性等方面提供幫助。例如,可以通過(guò)使用計(jì)算器來(lái)計(jì)算數(shù)學(xué)問(wèn)題、使用搜索引擎來(lái)搜尋實(shí)時(shí)信息。

另外,工具也可以擴(kuò)展智能代理的行動(dòng)空間。例如,通過(guò)調(diào)用語(yǔ)音生成、圖像生成等專家模型,來(lái)獲得多模態(tài)的行動(dòng)方式。因此,如何讓代理成為優(yōu)秀的工具使用者,即學(xué)會(huì)如何有效地利用工具,是非常重要且有前景的方向。

目前,主要的工具學(xué)習(xí)方法包括從演示中學(xué)習(xí)和從反饋中學(xué)習(xí)。此外,也可以通過(guò)元學(xué)習(xí)、課程學(xué)習(xí)等方式來(lái)讓代理程序在使用各種工具方面具備泛化能力。更進(jìn)一步,智能代理還可以進(jìn)一步學(xué)習(xí)如何「自給自足」地制造工具,從而提高其自主性和獨(dú)立性。

具身行動(dòng):具身(Embodyment)是指代理與環(huán)境交互過(guò)程中,理解、改造環(huán)境并更新自身狀態(tài)的能力。具身行動(dòng)(Embodied Action)被視為虛擬智能與物理現(xiàn)實(shí)的互通橋梁。

傳統(tǒng)的基于強(qiáng)化學(xué)習(xí)的 Agent 在樣本效率、泛化性和復(fù)雜問(wèn)題推理等方面存在局限性,而 LLM-based Agents 通過(guò)引入大模型豐富的內(nèi)在知識(shí),使得 Embodied Agent 能夠像人類一樣主動(dòng)感知、影響物理環(huán)境。根據(jù)代理在任務(wù)中的自主程度或者說(shuō) Action 的復(fù)雜程度,可以有以下的原子 Action:

  • Observation 可以幫助智能代理在環(huán)境中定位自身位置、感知對(duì)象物品和獲取其他環(huán)境信息;
  • Manipulation 則是完成一些具體的抓取、推動(dòng)等操作任務(wù);
  • Navigation 要求智能代理根據(jù)任務(wù)目標(biāo)變換自身位置并根據(jù)環(huán)境信息更新自身狀態(tài)。

通過(guò)組合這些原子行動(dòng),代理可以完成更為復(fù)雜的任務(wù)。例如「廚房的西瓜比碗大嗎?」這類具身的 QA 任務(wù)。為了解決這個(gè)問(wèn)題,代理需要導(dǎo)航到廚房,并在觀察二者的大小后得出答案。

受限于物理世界硬件的高成本和具身數(shù)據(jù)集缺乏等問(wèn)題,目前具身行動(dòng)的研究仍主要集中于游戲平臺(tái)《我的世界》等虛擬沙盒環(huán)境中。因此,一方面作者們期待有一種更貼近現(xiàn)實(shí)的任務(wù)范式和評(píng)價(jià)標(biāo)準(zhǔn),另一方面,也需要大家在高效構(gòu)建相關(guān)數(shù)據(jù)集上面有更多的探索。

Agent in Practice:多樣化的應(yīng)用場(chǎng)景

當(dāng)下,LLM-based Agents 已經(jīng)展現(xiàn)出了令人矚目的多樣性和強(qiáng)大性能。AutoGPT、MetaGPT、CAMEL 以及 GPT Engineer 等耳熟能詳?shù)膽?yīng)用實(shí)例正在以前所未有的速度蓬勃發(fā)展。

在介紹的具體的應(yīng)用之前,作者們討論了 Agent in Practice 的設(shè)計(jì)原則:

1. 幫助用戶從日常任務(wù)、重復(fù)勞動(dòng)中解脫出來(lái),減輕人類的工作壓力,提高解決任務(wù)的效率;
2. 不再需要用戶提出顯式的低級(jí)指令,就可以完全自主的分析、規(guī)劃、解決問(wèn)題;
3. 在解放用戶的雙手以后,嘗試解放大腦:在前沿科學(xué)領(lǐng)域充分發(fā)揮潛能,完成創(chuàng)新性的、探索性的工作。

在這個(gè)基礎(chǔ)上,代理的應(yīng)用可以有三種范式:

圖片

LLM-based Agent 的三種應(yīng)用范式:?jiǎn)未?、多代理、人機(jī)交互。

單代理場(chǎng)景

可以接受人類自然語(yǔ)言命令,執(zhí)行日常任務(wù)的智能代理目前備受用戶青睞,具有很高的現(xiàn)實(shí)使用價(jià)值。作者們首先在單智能代理的應(yīng)用場(chǎng)景中,闡述了其多樣化的應(yīng)用場(chǎng)景與對(duì)應(yīng)能力。

在本文中,單智能代理的應(yīng)用被劃分為如下三個(gè)層次:

圖片

單代理應(yīng)用場(chǎng)景的三個(gè)層次:任務(wù)導(dǎo)向、創(chuàng)新導(dǎo)向、生命周期導(dǎo)向。

  • 任務(wù)導(dǎo)向的部署中,代理幫助人類用戶處理日?;救蝿?wù)。它們需要具備基本的指令理解、任務(wù)分解、與環(huán)境交互的能力。具體來(lái)說(shuō),根據(jù)現(xiàn)有的任務(wù)類型,代理的實(shí)際應(yīng)用又可以分為模擬網(wǎng)絡(luò)環(huán)境與模擬生活場(chǎng)景。
  • 創(chuàng)新導(dǎo)向的部署中,代理能夠在前沿科學(xué)領(lǐng)域展現(xiàn)出自主探究的潛力。雖然來(lái)自專業(yè)領(lǐng)域的固有復(fù)雜性和訓(xùn)練數(shù)據(jù)的缺乏給智能代理的構(gòu)建帶來(lái)了阻礙,但目前已經(jīng)有許多工作在化學(xué)、材料、計(jì)算機(jī)等領(lǐng)域取得了進(jìn)展。
  • 生命周期導(dǎo)向的部署中,代理具備在一個(gè)開放世界中不斷探索、學(xué)習(xí)和使用新技能,并長(zhǎng)久生存的能力。在本節(jié)中,作者們以《我的世界》游戲?yàn)槔归_介紹。由于游戲中的生存挑戰(zhàn)可以被認(rèn)為是現(xiàn)實(shí)世界的一個(gè)縮影,已經(jīng)有許多研究者將其作為開發(fā)和測(cè)試代理綜合能力的獨(dú)特平臺(tái)。

多代理場(chǎng)景

早在 1986 年,Marvin Minsky 就做出了具有前瞻性的預(yù)言。他在《心智社會(huì)》(The Society of Mind)一書中提出了一種新穎的智力理論,認(rèn)為智力是在許多較小的、特定功能的代理的相互作用中產(chǎn)生的。例如,一些代理可能負(fù)責(zé)識(shí)別模式,而其他代理可能負(fù)責(zé)做出決策或生成解決方案。

這一想法隨著分布式人工智能的興起得到了具體實(shí)踐。多代理系統(tǒng)(Multi-Agent System)作為其中主要的研究問(wèn)題之一,主要關(guān)注代理們?nèi)绾斡行У貐f(xié)調(diào)并協(xié)作解決問(wèn)題。本文作者將多代理之間的交互劃分為以下兩種形式:

圖片

多代理應(yīng)用場(chǎng)景的兩種交互形式:合作型互動(dòng)、對(duì)抗型互動(dòng)。

合作型互動(dòng):作為實(shí)際應(yīng)用中部署最為廣泛的類型,合作型的代理系統(tǒng)可以有效提高任務(wù)效率、共同改進(jìn)決策。具體來(lái)說(shuō),根據(jù)合作形式的不同,作者們又將合作型互動(dòng)細(xì)分為無(wú)序合作與有序合作。
  • 當(dāng)所有代理自由地表達(dá)自己的觀點(diǎn)、看法,以一種沒(méi)有順序的方式進(jìn)行合作時(shí),稱為無(wú)序合作。
  • 當(dāng)所有代理遵循一定的規(guī)則,例如以流水線的形式逐一發(fā)表自己的觀點(diǎn)時(shí),整個(gè)合作過(guò)程井然有序,稱為有序合作。
對(duì)抗型互動(dòng):智能代理以一種針鋒相對(duì)(tit for tat)的方式進(jìn)行互動(dòng)。通過(guò)競(jìng)爭(zhēng)、談判、辯論的形式,代理拋棄原先可能錯(cuò)誤的信念,對(duì)自己的行為或者推理過(guò)程進(jìn)行有意義的反思,最終帶來(lái)整個(gè)系統(tǒng)響應(yīng)質(zhì)量的提升。

人機(jī)交互場(chǎng)景

人機(jī)交互(Human-Agent Interaction),顧名思義,是智能代理通過(guò)與人類交互,合作完成任務(wù)。一方面,代理的動(dòng)態(tài)學(xué)習(xí)能力需要溝通交流來(lái)支持;另一方面,目前的代理系統(tǒng)在可解釋性上的表現(xiàn)依然不足,可能會(huì)存在安全性、合法性等方面的問(wèn)題,因此需要人類參與進(jìn)行規(guī)范與監(jiān)督。

作者們?cè)谡撐闹袑?Human-Agent 的交互劃分為以下兩種模式:

圖片

人機(jī)交互場(chǎng)景的的兩種模式:Instructor-Executor 模式 vs. Equal Partnership 模式。

  • Instructor-Executor 模式人類作為指導(dǎo)者,給出指令、反饋意見(jiàn);而代理作為執(zhí)行者,依據(jù)指示逐步調(diào)整、優(yōu)化。這種模式在教育、醫(yī)療、商業(yè)等領(lǐng)域得到了廣泛的應(yīng)用。
  • Equal Partnership 模式:有研究觀察到代理能夠在與人類的交流中表現(xiàn)出共情能力,或是以平等的身份參與到任務(wù)執(zhí)行中。智能代理展現(xiàn)出在日常生活中的應(yīng)用潛力,有望在未來(lái)融入人類社會(huì)。

Agent 社會(huì):從個(gè)性到社會(huì)性

長(zhǎng)期以來(lái),研究人員一直憧憬著構(gòu)建「交互式的人工社會(huì)」,從沙盒游戲《模擬人生》到「元宇宙」,人們對(duì)模擬社會(huì)的定義可以概述為:環(huán)境 + 環(huán)境中生存、互動(dòng)的個(gè)體。

在文章中,作者們用一張圖描述了 Agent 社會(huì)的概念框架:

圖片

代理社會(huì)的概念框架,分為兩個(gè)關(guān)鍵部分:代理和環(huán)境。

該框架中,我們可以看到:

  1. 左側(cè)部分:在個(gè)體層面上,代理表現(xiàn)出多種內(nèi)化行為,例如計(jì)劃、推理和反思。此外,代理還顯現(xiàn)出內(nèi)在的人格特征,涵蓋認(rèn)知、情感和性格三個(gè)方面。
  2. 中間部分:單個(gè)代理可以與其他代理個(gè)體組成群體,共同展現(xiàn)出合作等群體行為,例如協(xié)同合作等。
  3. 右側(cè)部分:環(huán)境的形式可以是虛擬的沙盒環(huán)境,也可以是真實(shí)的物理世界。環(huán)境中的要素包括了人類參與者和各類可用資源。對(duì)于單個(gè)代理而言,其他代理也屬于環(huán)境的一部分。
  4. 整體互動(dòng):代理們通過(guò)感知外界環(huán)境、采取行動(dòng),積極參與整個(gè)交互過(guò)程。

代理的社會(huì)行為與人格

文章從外在行為和內(nèi)在人格來(lái)審視了代理在社會(huì)中的表現(xiàn):

社會(huì)行為:從社會(huì)的角度出發(fā),可以將行為分為個(gè)體和集體兩個(gè)層次:

  • 個(gè)體行為構(gòu)成了代理自身運(yùn)作和發(fā)展的基礎(chǔ)。包括以感知為代表的輸入、行動(dòng)為代表的輸出,以及代理自身的內(nèi)化行為。
  • 群體行為是指兩個(gè)以上代理自發(fā)交互時(shí)產(chǎn)生的行為。包括以協(xié)作為代表的積極行為、沖突為代表的消極行為,以及從眾、旁觀等中立行為。

人格:包括認(rèn)知、情感和性格。就像人類在社會(huì)化過(guò)程中逐漸形成自己的特質(zhì)一樣,代理也展現(xiàn)了所謂的 '類人智能',即通過(guò)與群體和環(huán)境的互動(dòng)中逐漸塑造人格。

  • 認(rèn)知(Cognitive abilities):涵蓋了代理獲取和理解知識(shí)的過(guò)程,研究表明,基于 LLM 的代理在某些方面能夠表現(xiàn)出類似于人類的深思熟慮和智力水平。
  • 情感(Emotional intelligence):涉及主觀感受和情緒狀態(tài),如喜怒哀樂(lè),以及表現(xiàn)出同情和共情的能力。
  • 性格(Character portrayal):為了理解和分析 LLMs 的性格特征,研究人員利用了成熟的評(píng)測(cè)方式,如大五人格、MBTI 測(cè)試,以探究性格的多樣性和復(fù)雜性。

模擬社會(huì)的運(yùn)行環(huán)境

代理社會(huì)不僅由獨(dú)立的個(gè)體構(gòu)成,還包括了與其交互的環(huán)境。環(huán)境對(duì)代理的感知、行動(dòng)和互動(dòng)產(chǎn)生影響。反過(guò)來(lái),代理也通過(guò)他們的行為和決策也改變著環(huán)境的狀態(tài)。對(duì)于單個(gè)代理而言,環(huán)境包括其他自主代理、人類以及可使用的資源。

在此,作者探討了環(huán)境的三種類型:

基于文本的環(huán)境:由于 LLMs 主要依賴語(yǔ)言作為其輸入和輸出格式,因此基于文本的環(huán)境是代理最自然的操作平臺(tái)。通過(guò)文字的方式來(lái)描述社會(huì)現(xiàn)象和互動(dòng),文本環(huán)境提供了語(yǔ)義和背景知識(shí)。代理存在于這樣的文本世界中,依賴文本資源來(lái)感知、推理和采取行動(dòng)。

虛擬沙盒環(huán)境:在計(jì)算機(jī)領(lǐng)域,沙盒是指一種可受控且隔離的環(huán)境,常用于進(jìn)行軟件測(cè)試和病毒分析。而代理社會(huì)的虛擬沙盒環(huán)境則是作為模擬社會(huì)互動(dòng)和行為仿真的平臺(tái),其主要特點(diǎn)包括:

  • 可視化:可以使用簡(jiǎn)單的 2D 圖形界面乃至復(fù)雜的 3D 建模來(lái)展示世界,以一種直觀的方式刻畫模擬社會(huì)的方方面面。
  • 可擴(kuò)展性:可以構(gòu)建和部署各種不同的場(chǎng)景(Web、游戲等)進(jìn)行各種實(shí)驗(yàn),為代理提供了廣闊的探索空間。

真實(shí)的物理環(huán)境:物理環(huán)境是由實(shí)際物體和空間組成的有形環(huán)境,代理在其中進(jìn)行觀察和行動(dòng)。這種環(huán)境引入了豐富的感官輸入(視覺(jué)、聽(tīng)覺(jué)和空間感)。與虛擬環(huán)境不同,物理空間對(duì)代理行為提出了更多的要求。即代理在物理環(huán)境中必須具備適應(yīng)性,生成可執(zhí)行的運(yùn)動(dòng)控制。

作者舉了一個(gè)例子來(lái)解釋物理環(huán)境的復(fù)雜性:想象智能代理在工廠里操作機(jī)械臂的情景,操作機(jī)械臂時(shí)需要精確控制力度,以避免損壞不同材質(zhì)的物體;此外,代理需要在物理工作空間中導(dǎo)航,及時(shí)調(diào)整移動(dòng)路徑,以規(guī)避障礙物并優(yōu)化機(jī)械臂的運(yùn)動(dòng)軌跡。

這些要求都增加了代理在物理環(huán)境中的復(fù)雜性和挑戰(zhàn)性。

模擬,啟動(dòng)!

在文章中,作者們認(rèn)為一個(gè)模擬社會(huì)應(yīng)該具有開放性、持久性、情境性和組織性。開放性允許代理自主地進(jìn)出模擬社會(huì);持久性是指社會(huì)具有隨著時(shí)間的推移而發(fā)展的連貫軌跡;情境性強(qiáng)調(diào)主體在特定環(huán)境中的存在和運(yùn)作;組織性則確保模擬社會(huì)擁有類似物理世界的規(guī)則與限制。

至于模擬社會(huì)的意義,斯坦福大學(xué)的 Generative Agents 小鎮(zhèn)為大家提供了生動(dòng)的例子 ——Agent 社會(huì)可以用于探索群體智能的能力邊界,例如代理們共同籌辦了一場(chǎng)情人節(jié)派對(duì);也可以用來(lái)加速社會(huì)科學(xué)的研究,例如通過(guò)模擬社交網(wǎng)絡(luò)來(lái)觀察傳播學(xué)現(xiàn)象。此外,還有研究通過(guò)模擬道德決策場(chǎng)景來(lái)探討代理背后的價(jià)值觀、通過(guò)模擬政策對(duì)社會(huì)的影響來(lái)輔助決策等。

進(jìn)一步,作者指出這些模擬還可能存在一定風(fēng)險(xiǎn),包括但不限于:有害社會(huì)現(xiàn)象;刻板印象和偏見(jiàn);隱私安全問(wèn)題;過(guò)度依賴與成癮性。

前瞻開放問(wèn)題

在論文的最后,作者還討論了一些前瞻開放性問(wèn)題,拋磚引玉,供讀者思考:

智能代理與大語(yǔ)言模型的研究該如何互相促進(jìn)、共同發(fā)展?大模型在語(yǔ)言理解、決策制定以及泛化能力等方面展現(xiàn)出強(qiáng)大的潛力,成為代理構(gòu)建過(guò)程中的關(guān)鍵角色,而代理的進(jìn)展也為大模型提出了更高的要求。

LLM-based Agents 會(huì)帶來(lái)哪些挑戰(zhàn)與隱憂?智能代理能否真正落地,需要經(jīng)過(guò)嚴(yán)謹(jǐn)?shù)陌踩栽u(píng)估,避免對(duì)真實(shí)世界帶來(lái)危害。作者總結(jié)了更多潛在威脅,例如:非法濫用、失業(yè)風(fēng)險(xiǎn)、對(duì)人類福祉造成影響等等。
代理數(shù)量的提升(scaling up)會(huì)帶來(lái)哪些機(jī)遇和挑戰(zhàn)?在模擬社會(huì)中,提升個(gè)體數(shù)量可以顯著提升模擬的可信度與真實(shí)性。然而,隨著代理數(shù)量的上升,通信與消息傳播問(wèn)題會(huì)變得相當(dāng)復(fù)雜,信息的失真、誤解或者幻覺(jué)現(xiàn)象都會(huì)顯著降低整個(gè)模擬系統(tǒng)的效率。

網(wǎng)絡(luò)上關(guān)于 LLM-based Agent 是否是通向 AGI 的合適道路的爭(zhēng)論。有研究者認(rèn)為,以 GPT-4 為代表的大模型已經(jīng)在足夠的語(yǔ)料上進(jìn)行了訓(xùn)練,在此基礎(chǔ)上構(gòu)建的代理有潛力成為打開 AGI 之門的鑰匙。但也有其他研究者認(rèn)為,自回歸語(yǔ)言建模(Auto-regressive Language Modeling)并不能顯現(xiàn)出真正的智能,因?yàn)樗鼈冎皇亲鞒鲰憫?yīng)。一個(gè)更完備的建模方式,例如世界模型(World Model),才能通向 AGI。

群體智能的演化歷程。群體智能是一種集結(jié)眾人的意見(jiàn)進(jìn)而轉(zhuǎn)化為決策的過(guò)程。然而,一味通過(guò)增加代理的數(shù)量,是否會(huì)產(chǎn)生真正的「智能」?此外,如何協(xié)調(diào)單個(gè)代理,讓智能代理社會(huì)克服「團(tuán)體迷思」和個(gè)人認(rèn)知偏差?

代理即服務(wù)(Agent as a Service,AaaS)。由于 LLM-based Agents 比大模型本身更加復(fù)雜,中小型企業(yè)或個(gè)人更加難在本地構(gòu)建,因此云廠商可以考慮以服務(wù)的形式來(lái)將智能代理落地,即 Agent-as-a-Service。就像其他的云服務(wù)一樣,AaaS 有潛力為用戶提供高靈活性和按需的自助服務(wù)。
圖片

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多