小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

2024年高考數(shù)學(xué)一輪復(fù)習(xí)(新高考版) 第3章 §3-8 隱零點(diǎn)與極值點(diǎn)偏移問題[培優(yōu)課]

 中小學(xué)知識(shí)學(xué)堂 2023-06-29 發(fā)布于云南

§3.8 隱零點(diǎn)與極值點(diǎn)偏移問題

隱零點(diǎn)問題是指對(duì)函數(shù)的零點(diǎn)設(shè)而不求,通過一種整體代換和過渡,再結(jié)合題目條件最終解決問題;極值點(diǎn)偏移是指函數(shù)在極值點(diǎn)左右的增減速度不一樣,導(dǎo)致函數(shù)圖象不具有對(duì)稱性,隱零點(diǎn)與極值點(diǎn)偏移問題常常出現(xiàn)在高考數(shù)學(xué)的壓軸題中,這類題往往對(duì)思維要求較高,過程較為煩瑣,計(jì)算量較大,難度大.

題型一 隱零點(diǎn)

1 (2023·鄭州模擬)已知函數(shù)f(x)ex1-+1,g(x)=+2.

(1)求函數(shù)g(x)的極值;

(2)當(dāng)x>0時(shí),證明:f(x)g(x)

(1)解 g(x)2定義域?yàn)?/span>(0,+),g(x)

則當(dāng)x(0,e)時(shí),g(x)>0,g(x)(0,e)上單調(diào)遞增,

當(dāng)x(e,+)時(shí),g(x)<0g(x)(e,+)上單調(diào)遞減,

故函數(shù)g(x)的極大值為g(e)2,無極小值.

(2)證明 f(x)g(x)等價(jià)于證明xex12lnxx(x>0),

xex1lnxx20.

h(x)xex1lnxx2(x>0),

h(x)(x1)ex1(x1),

φ(x)ex1,則φ(x)(0,+)上單調(diào)遞增,

φ10<e210<0,φ(1)e21>0,

φ(x)(0,+)上存在唯一零點(diǎn)x0,且x0,

當(dāng)x(0x0)時(shí),φ(x)<0,h(x)<0,h(x)(0x0)上單調(diào)遞減;

當(dāng)x(x0,+)時(shí),φ(x)>0h(x)>0,h(x)(x0,+)上單調(diào)遞增,

h(x)minh(x0)lnx0x02,又因?yàn)?/span>φ(x0)0,即

所以h(x0)=-lnx0x01(x01)x010,從而h(x)h(x0)0,

f(x)g(x)

思維升華 零點(diǎn)問題求解三步曲

(1)用函數(shù)零點(diǎn)存在定理判定導(dǎo)函數(shù)零點(diǎn)的存在性,列出零點(diǎn)方程f(x0)0,并結(jié)合f(x)的單調(diào)性得到零點(diǎn)的取值范圍.

(2)以零點(diǎn)為分界點(diǎn),說明導(dǎo)函數(shù)f(x)的正負(fù),進(jìn)而得到f(x)的最值表達(dá)式.

(3)將零點(diǎn)方程適當(dāng)變形,整體代入最值式子進(jìn)行化簡證明,有時(shí)(1)中的零點(diǎn)范圍還可以適當(dāng)縮小.

跟蹤訓(xùn)練1 (2023·濰坊模擬)設(shè)函數(shù)f(x)xaln x2.

(1)f(x)的單調(diào)區(qū)間;

(2)a1,f(x)f(x)的導(dǎo)函數(shù),當(dāng)x>1時(shí),ln x1>(1k)f(x),求整數(shù)k的最大值.

解 (1)由題意知,f(x)定義域?yàn)?/span>(0,+),f(x)1,

當(dāng)a0時(shí),f(x)>0,f(x)(0,+)上單調(diào)遞增;

當(dāng)a>0時(shí),若x(0,a)f(x)<0;若x(a,+),f(x)>0;

f(x)(0a)上單調(diào)遞減,在(a,+)上單調(diào)遞增;

綜上所述,當(dāng)a0時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+);當(dāng)a>0時(shí),f(x)的單調(diào)遞減區(qū)間為(0a),單調(diào)遞增區(qū)間為(a,+)

(2)當(dāng)a1時(shí),f(x)xlnx2,

f(x)1(x>0);

lnx1>(1k)f(x)得,x(ln x1)>(1k)(x1),即k1<(x>1),

g(x)(x>1),則g(x),

h(x)xlnx2(x>1),則h(x)1>0,

h(x)(1,+)上單調(diào)遞增,

h(3)1ln 3<0h(4)2ln 4>0,

?x0(3,4),使得h(x0)x0lnx020,

此時(shí)ln x0x02

則當(dāng)x(1,x0)時(shí),g(x)<0;當(dāng)x(x0,+)時(shí),g(x)>0,

g(x)(1x0)上單調(diào)遞減,在(x0,+)上單調(diào)遞增,

g(x)ming(x0)x0,

k1<x0,即k<x01

x0(3,4),x01(2,3),整數(shù)k的最大值為2.

題型二 極值點(diǎn)偏移

2 已知函數(shù)f(x)xex.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;

(2)x1x2f(x1)f(x2),求證:x1x2>2.

(1)解 f(x)ex(1x)

f(x)>0x<1;令f(x)<0x>1

所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(,1),單調(diào)遞減區(qū)間為(1,+)

所以f(x)有極大值f(1),無極小值.

(2)證明 方法一 (對(duì)稱化構(gòu)造函數(shù)法)

(1)知,不妨設(shè)0<x1<1<x2,

要證x1x2>2,

只要證x2>2x1>1.

由于f(x)(1,+)上單調(diào)遞減,故只要證f(x2)<f(2x1),

由于f(x1)f(x2),

故只要證f(x1)<f(2x1),

H(x)f(x)f(2x)xex(2x)ex2(0<x<1)

H(x),

因?yàn)?/span>0<x<1,所以1x>0,2x>x,

所以e2x>ex,即e2xex>0,

所以H(x)>0,所以H(x)(0,1)上單調(diào)遞增,

所以H(x)<H(1)0,

即有f(x1)<f(2x1)成立,

所以x1x2>2.

方法二 (比值代換法)設(shè)0<x1<1<x2,

f(x1)f(x2)

,

等式兩邊取對(duì)數(shù)得ln x1x1ln x2x2.

t>1,則x2tx1,代入上式得ln x1x1ln tlnx1tx1,得x1x2,

所以x1x2>2?ln t>0

設(shè)g(t)ln t(t>1),

所以g(t)>0,

所以當(dāng)t>1時(shí),g(t)單調(diào)遞增,

所以g(t)>g(1)0,所以ln t>0,

x1x2>2.

思維升華 極值點(diǎn)偏移問題的解法

(1)(對(duì)稱化構(gòu)造法)構(gòu)造輔助函數(shù):對(duì)結(jié)論x1x2>(<)2x0型,構(gòu)造函數(shù)F(x)f(x)f(2x0x);對(duì)結(jié)論x1x2>(<)x型,構(gòu)造函數(shù)F(x)f(x),通過研究F(x)的單調(diào)性獲得不等式.

(2)(比值代換法)通過代數(shù)變形將所證的雙變量不等式通過代換t化為單變量的函數(shù)不等式,利用函數(shù)單調(diào)性證明.

跟蹤訓(xùn)練2 已知函數(shù)f(x)ln(xa)-,函數(shù)g(x)滿足ln[g(x)x2]ln xxa.

(1)討論函數(shù)f(x)的單調(diào)性;

(2)g(x)有兩個(gè)不同的零點(diǎn)x1,x2,證明:x1x2<1.

(1)解 由已知得,函數(shù)f(x)的定義域?yàn)?/span>(a,+),

f(x)

所以當(dāng)-a1,即a1時(shí),f(x)>0,f(x)(a,+)上單調(diào)遞增,

當(dāng)-a<1,即a>1時(shí),若-a<x<1,則f(x)<0,若x>1,則f(x)>0,

所以f(x)(a,1)上單調(diào)遞減,在(1,+)上單調(diào)遞增.

綜上所述,當(dāng)a1時(shí),f(x)(a,+)上單調(diào)遞增;

當(dāng)a>1時(shí),f(x)(a,1)上單調(diào)遞減,在(1,+)上單調(diào)遞增.

(2)證明 因?yàn)?/span>ln[g(x)x2]ln xxa,所以g(x)x·exax2x(exax),其定義域?yàn)?/span>(0,+)

g(x)xexax2x(exax)0等價(jià)于exax0,即xln xa,

設(shè)h(x)xlnx(x>0),

所以h(x)1

h(x)>0,則x>1,令h(x)<0,則0<x<1.

所以函數(shù)h(x)(0,1)上單調(diào)遞減,在(1,+)上單調(diào)遞增,

因?yàn)楹瘮?shù)g(x)有兩個(gè)不同的零點(diǎn),即h(x)a有兩個(gè)不同的根,所以a>h(1)1,

所以g(x)有兩個(gè)不同的零點(diǎn)x1,x20<x1<1<x2,且h(x1)h(x2)a,

φ(x)h(x)hx2lnx(0<x<1),

φ(x)1>0對(duì)任意的x(0,1)恒成立,

所以函數(shù)φ(x)(0,1)上單調(diào)遞增,φ(x)<φ(1)0

即當(dāng)0<x<1時(shí),h(x)<h,

0<x1<1,所以h(x1)h(x2)<h,

因?yàn)?/span>x2>1,>1,且h(x)(1,+)上單調(diào)遞增,所以x2<,故x1x2<1得證.

課時(shí)精練

1.已知函數(shù)f(x)ax2(2a1)x2ln x(aR)

(1)當(dāng)a>0時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;

(2)當(dāng)a0時(shí),證明:f(x)<2exx4 .(其中e為自然對(duì)數(shù)的底數(shù))

(1)解 f(x)的定義域?yàn)?/span>(0,+),

f(x)ax(2a1),

當(dāng)0<<2,即a>時(shí),f(x),(2,+)上單調(diào)遞增.

當(dāng)2,即a時(shí),f(x)0,f(x)(0,+)上單調(diào)遞增.

當(dāng)>2,即0<a<時(shí),f(x)(0,2),上單調(diào)遞增.

綜上所述,當(dāng)a>時(shí),f(x)的單調(diào)遞增區(qū)間為,(2,+)

當(dāng)a時(shí),f(x)的單調(diào)遞增區(qū)間為(0,+);

當(dāng)0<a<時(shí),f(x)的單調(diào)遞增區(qū)間為(0,2),.

(2)證明 當(dāng)a0時(shí),由f(x)<2exx4化簡得exlnx2>0,

構(gòu)造函數(shù)h(x)exlnx2(x>0),

h(x)ex,令g(x)h(x),則g(x)ex>0h(x)(0,+)上單調(diào)遞增,

h2<0,h(1)e1>0,

故存在x0,使得h(x0)0,即.

當(dāng)x(0,x0)時(shí),h(x)<0,h(x)單調(diào)遞減;

當(dāng)x(x0,+)時(shí),h(x)>0,h(x)單調(diào)遞增.

所以當(dāng)xx0時(shí),h(x)取得極小值,也是最小值.

h(x)minh(x0)lnx022x02>220

所以h(x)exlnx2>0,故f(x)<2exx4.

2.設(shè)f(x)xexmx2,mR.

(1)設(shè)g(x)f(x)2mx,當(dāng)m>0時(shí),討論函數(shù)g(x)的單調(diào)性;

(2)若函數(shù)f(x)(0,+∞)有兩個(gè)零點(diǎn)x1x2,證明:x1x2>2.

(1)解 g(x)xexmx22mx(xR),g(x)(x1)(ex2m),

當(dāng)m>0時(shí),令g(x)0,得x1=-1,x2ln(2m)

若-1>ln(2m),即0<m<,

則當(dāng)x>1x<ln(2m)時(shí),g(x)>0,g(x)單調(diào)遞增,

 當(dāng)ln(2m)<x<1時(shí),g(x)<0,g(x)單調(diào)遞減,

若-1<ln(2m),即m>,

則當(dāng)x<1x>ln(2m)時(shí),g(x)>0g(x)單調(diào)遞增,

當(dāng)-1<x<ln(2m)時(shí),g(x)<0,g(x)單調(diào)遞減,

當(dāng)-1ln(2m),即m時(shí),g(x)0,g(x)R上單調(diào)遞增,

綜上所述,當(dāng)0<m<時(shí),g(x)(1,+),(ln(2m))上單調(diào)遞增,(ln(2m),-1)上單調(diào)遞減,

當(dāng)m>時(shí),g(x)(,-1), (ln(2m),+)上單調(diào)遞增, (1,ln(2m))上單調(diào)遞減,

當(dāng)m時(shí),g(x)R上單調(diào)遞增.

(2)證明 f(x)xexmx20,因?yàn)?/span>x>0,所以exmx

F(x)exmx(x>0), F(x1)0,F(x2)0,則mx1mx2,兩式相除得,

,

不妨設(shè)x2>x1,令tx2x1,則t>0,x2tx1

代入得,et,x1,

x1x22x1tt,

故要證x1x2>2,即證t>2,

又因?yàn)?/span>et1>0

等價(jià)于證明2t(t2)(et1)>0,

構(gòu)造函數(shù)h(t)2t(t2)(et1)(t>0),

h(t)(t1)et1

h(t)G(t),則G(t)tet>0

h(t)(0,+)上單調(diào)遞增,h(t)>h(0)0,

從而h(t)(0,+)上單調(diào)遞增,h(t)>h(0)0.

x1x2>2.

    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多