9月14日夜,國(guó)際頂級(jí)學(xué)術(shù)期刊《自然》發(fā)表了我國(guó)科學(xué)家在下一代光電芯片制造領(lǐng)域的重大突破。南京大學(xué)張勇、肖敏、祝世寧領(lǐng)銜的科研團(tuán)隊(duì),發(fā)明了一種新型“非互易飛秒激光極化鐵電疇”技術(shù),將飛秒脈沖激光聚焦于材料“鈮酸鋰”的晶體內(nèi)部,通過(guò)控制激光移動(dòng)的方向,在晶體內(nèi)部形成有效電場(chǎng),實(shí)現(xiàn)三維結(jié)構(gòu)的直寫和擦除。這一新技術(shù),突破了傳統(tǒng)飛秒激光的光衍射極限,把光雕刻鈮酸鋰三維結(jié)構(gòu)的尺寸,從傳統(tǒng)的1微米量級(jí)(相當(dāng)于頭發(fā)絲的五十分之一),首次縮小到納米級(jí),達(dá)到30納米,大大提高了加工精度。 這一重大發(fā)明,未來(lái)或可開辟光電芯片制造新賽道,有望用于光電調(diào)制器、聲學(xué)濾波器、非易失鐵電存儲(chǔ)器等關(guān)鍵光電器件芯片制備,在5G/6G通訊、光計(jì)算、人工智能等領(lǐng)域有廣泛的應(yīng)用前景。 鈮酸鋰得益于其優(yōu)越的透射譜范圍、非線性光學(xué)系數(shù)、電光和壓電性能,是下一代5G/6G通訊和光子芯片的重要載體。特別的是,在鈮酸鋰晶體中制備鐵電疇結(jié)構(gòu),在非線性光學(xué)、聲學(xué)濾波器、非易失鐵電存儲(chǔ)等領(lǐng)域有廣泛的應(yīng)用前景。 此次,南京大學(xué)的研究團(tuán)隊(duì)發(fā)展了一種新型非互易激光極化鐵電疇技術(shù),將飛秒脈沖激光聚焦于鈮酸鋰晶體內(nèi)部進(jìn)行直寫,得到了納米線寬的三維鐵電疇結(jié)構(gòu)。在直寫過(guò)程中,鈮酸鋰晶體在高強(qiáng)度激光作用下發(fā)生多光子吸收,導(dǎo)致局部晶體溫度升高,既使得鈮酸鋰晶體的局域矯頑場(chǎng)降低,又在晶體內(nèi)部形成了一個(gè)有效電場(chǎng)。在二者共同作用下,晶體內(nèi)部形成一個(gè)有效區(qū)域,可以實(shí)現(xiàn)鐵電疇極化反轉(zhuǎn)。同時(shí),有效電場(chǎng)方向的分布特性決定了激光直寫鐵電疇具有非互易特性,即沿不同方向直寫可以實(shí)現(xiàn)不同線寬的鐵電疇極化以及反極化。研究人員利用這一特性設(shè)計(jì)了不同的加工工藝,在三維空間上均實(shí)現(xiàn)了突破衍射極限的鐵電疇線寬控制,實(shí)驗(yàn)中成功制備出線寬為100 nm ~ 400 nm的條形鐵電疇和尖端寬度為30 nm的楔形鐵電疇。同時(shí),還演示了鐵電疇結(jié)構(gòu)從一維向二維和三維的結(jié)構(gòu)轉(zhuǎn)換,并實(shí)現(xiàn)了高效非線性光束整形。此外,該加工方法得到的鐵電疇具有良好的穩(wěn)定性,經(jīng)過(guò)兩年的時(shí)效處理或者300℃高溫處理后依然穩(wěn)定存在。 這一工作將飛秒激光極化技術(shù)與鈮酸鋰鐵電疇工程有機(jī)結(jié)合,突破了傳統(tǒng)技術(shù)的壁壘,首次在三維空間實(shí)現(xiàn)了納米鐵電疇可控制備。將其應(yīng)用于量子光學(xué)領(lǐng)域,可實(shí)現(xiàn)高效、高維和窄線寬量子糾纏產(chǎn)生;在電子學(xué)領(lǐng)域,可以推動(dòng)高性能鐵電疇壁納米電子器件的發(fā)展,譬如大容量可重寫非易失性存儲(chǔ)器;在聲學(xué)領(lǐng)域,納米周期的鐵電疇結(jié)構(gòu)可以實(shí)現(xiàn)超高頻聲學(xué)諧振器和濾波器。飛秒激光極化技術(shù)可以進(jìn)一步應(yīng)用于其他鐵電晶體,包括鉭酸鋰和磷酸鈦鉀晶體等,并促進(jìn)高性能三維光、聲、電集成器件的發(fā)展。 |
|
來(lái)自: baoyisheng143 > 《應(yīng)用研究》