小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

Java中文分詞組件

 春和秋榮 2022-03-15

目錄

API在線文檔:

編譯好的jar包下載(包含依賴):

Maven依賴:

分詞使用方法:

分詞算法效果評(píng)估:

相關(guān)文章:


word分詞是一個(gè)Java實(shí)現(xiàn)的分布式的中文分詞組件,提供了多種基于詞典的分詞算法,并利用ngram模型來消除歧義。能準(zhǔn)確識(shí)別英文、數(shù)字,以及日期、時(shí)間等數(shù)量詞,能識(shí)別人名、地名、組織機(jī)構(gòu)名等未登錄詞。能通過自定義配置文件來改變組件行為,能自定義用戶詞庫、自動(dòng)檢測詞庫變化、支持大規(guī)模分布式環(huán)境,能靈活指定多種分詞算法,能使用refine功能靈活控制分詞結(jié)果,還能使用詞性標(biāo)注、同義標(biāo)注、反義標(biāo)注、拼音標(biāo)注等功能。同時(shí)還無縫和Lucene、Solr、ElasticSearch、Luke集成。

注意:word1.3需要JDK1.8

API在線文檔:

word 1.0 API

word 1.1 API

word 1.2 API

編譯好的jar包下載(包含依賴):

鏈接: https://pan.baidu.com/s/1mnGQqx_5Yqv_KxS9HJCTcA 

Maven依賴:

在pom.xml中指定dependency,可用版本有1.0、1.1、1.2、1.3:

<dependencies>
    <dependency>
        <groupId>org.apdplat</groupId>
        <artifactId>word</artifactId>
        <version>1.3</version>
    </dependency>
</dependencies>

分詞使用方法:

1、快速體驗(yàn)

運(yùn)行項(xiàng)目根目錄下的腳本demo-word.bat可以快速體驗(yàn)分詞效果
用法: command [text] [input] [output]
命令command的可選值為:demo、text、file
demo
text 楊尚川是APDPlat應(yīng)用級(jí)產(chǎn)品開發(fā)平臺(tái)的作者
file d:/text.txt d:/word.txt
exit

2、對文本進(jìn)行分詞

移除停用詞:List<Word> words = WordSegmenter.seg("楊尚川是APDPlat應(yīng)用級(jí)產(chǎn)品開發(fā)平臺(tái)的作者");
保留停用詞:List<Word> words = WordSegmenter.segWithStopWords("楊尚川是APDPlat應(yīng)用級(jí)產(chǎn)品開發(fā)平臺(tái)的作者");
            System.out.println(words);

輸出:
移除停用詞:[楊尚川, apdplat, 應(yīng)用級(jí), 產(chǎn)品, 開發(fā)平臺(tái), 作者]
保留停用詞:[楊尚川, 是, apdplat, 應(yīng)用級(jí), 產(chǎn)品, 開發(fā)平臺(tái), 的, 作者]

3、對文件進(jìn)行分詞

String input = "d:/text.txt";
String output = "d:/word.txt";
移除停用詞:WordSegmenter.seg(new File(input), new File(output));
保留停用詞:WordSegmenter.segWithStopWords(new File(input), new File(output));

4、自定義配置文件

默認(rèn)配置文件為類路徑下的word.conf,打包在word-x.x.jar中
自定義配置文件為類路徑下的word.local.conf,需要用戶自己提供
如果自定義配置和默認(rèn)配置相同,自定義配置會(huì)覆蓋默認(rèn)配置
配置文件編碼為UTF-8

5、自定義用戶詞庫

自定義用戶詞庫為一個(gè)或多個(gè)文件夾或文件,可以使用絕對路徑或相對路徑
用戶詞庫由多個(gè)詞典文件組成,文件編碼為UTF-8
詞典文件的格式為文本文件,一行代表一個(gè)詞
可以通過系統(tǒng)屬性或配置文件的方式來指定路徑,多個(gè)路徑之間用逗號(hào)分隔開
類路徑下的詞典文件,需要在相對路徑前加入前綴classpath:

指定方式有三種:
    指定方式一,編程指定(高優(yōu)先級(jí)):
        WordConfTools.set("dic.path", "classpath:dic.txt,d:/custom_dic");
        DictionaryFactory.reload();//更改詞典路徑之后,重新加載詞典
    指定方式二,Java虛擬機(jī)啟動(dòng)參數(shù)(中優(yōu)先級(jí)):
        java -Ddic.path=classpath:dic.txt,d:/custom_dic
    指定方式三,配置文件指定(低優(yōu)先級(jí)):
        使用類路徑下的文件word.local.conf來指定配置信息
        dic.path=classpath:dic.txt,d:/custom_dic

如未指定,則默認(rèn)使用類路徑下的dic.txt詞典文件

6、自定義停用詞詞庫

使用方式和自定義用戶詞庫類似,配置項(xiàng)為:
stopwords.path=classpath:stopwords.txt,d:/custom_stopwords_dic

7、自動(dòng)檢測詞庫變化

可以自動(dòng)檢測自定義用戶詞庫和自定義停用詞詞庫的變化
包含類路徑下的文件和文件夾、非類路徑下的絕對路徑和相對路徑
如:
classpath:dic.txt,classpath:custom_dic_dir,
d:/dic_more.txt,d:/DIC_DIR,D:/DIC2_DIR,my_dic_dir,my_dic_file.txt

classpath:stopwords.txt,classpath:custom_stopwords_dic_dir,
d:/stopwords_more.txt,d:/STOPWORDS_DIR,d:/STOPWORDS2_DIR,stopwords_dir,remove.txt

8、顯式指定分詞算法

對文本進(jìn)行分詞時(shí),可顯式指定特定的分詞算法,如:
WordSegmenter.seg("APDPlat應(yīng)用級(jí)產(chǎn)品開發(fā)平臺(tái)", SegmentationAlgorithm.BidirectionalMaximumMatching);

SegmentationAlgorithm的可選類型為:   
正向最大匹配算法:MaximumMatching
逆向最大匹配算法:ReverseMaximumMatching
正向最小匹配算法:MinimumMatching
逆向最小匹配算法:ReverseMinimumMatching
雙向最大匹配算法:BidirectionalMaximumMatching
雙向最小匹配算法:BidirectionalMinimumMatching
雙向最大最小匹配算法:BidirectionalMaximumMinimumMatching
全切分算法:FullSegmentation
最少分詞算法:MinimalWordCount
最大Ngram分值算法:MaxNgramScore

9、分詞效果評(píng)估

運(yùn)行項(xiàng)目根目錄下的腳本evaluation.bat可以對分詞效果進(jìn)行評(píng)估
評(píng)估采用的測試文本有253 3709行,共2837 4490個(gè)字符
評(píng)估結(jié)果位于target/evaluation目錄下:
corpus-text.txt為分好詞的人工標(biāo)注文本,詞之間以空格分隔
test-text.txt為測試文本,是把corpus-text.txt以標(biāo)點(diǎn)符號(hào)分隔為多行的結(jié)果
standard-text.txt為測試文本對應(yīng)的人工標(biāo)注文本,作為分詞是否正確的標(biāo)準(zhǔn)
result-text-***.txt,***為各種分詞算法名稱,這是word分詞結(jié)果
perfect-result-***.txt,***為各種分詞算法名稱,這是分詞結(jié)果和人工標(biāo)注標(biāo)準(zhǔn)完全一致的文本
wrong-result-***.txt,***為各種分詞算法名稱,這是分詞結(jié)果和人工標(biāo)注標(biāo)準(zhǔn)不一致的文本

10、分布式中文分詞器

1、在自定義配置文件word.conf或word.local.conf中指定所有的配置項(xiàng)*.path使用HTTP資源,同時(shí)指定配置項(xiàng)redis.*
2、配置并啟動(dòng)提供HTTP資源的web服務(wù)器,將項(xiàng)目:https://github.com/ysc/word_web部署到tomcat
3、配置并啟動(dòng)redis服務(wù)器

11、詞性標(biāo)注(1.3才有這個(gè)功能)

將分詞結(jié)果作為輸入?yún)?shù),調(diào)用PartOfSpeechTagging類的process方法,詞性保存在Word類的partOfSpeech字段中
如下所示:
List<Word> words = WordSegmenter.segWithStopWords("我愛中國");
System.out.println("未標(biāo)注詞性:"+words);
//詞性標(biāo)注
PartOfSpeechTagging.process(words);
System.out.println("標(biāo)注詞性:"+words);
輸出內(nèi)容:
未標(biāo)注詞性:[我, 愛, 中國]
標(biāo)注詞性:[我/r, 愛/v, 中國/ns]

12、refine

我們看一個(gè)切分例子:
List<Word> words = WordSegmenter.segWithStopWords("我國工人階級(jí)和廣大勞動(dòng)群眾要更加緊密地團(tuán)結(jié)在黨中央周圍");
System.out.println(words);
結(jié)果如下:
[我國, 工人階級(jí), 和, 廣大, 勞動(dòng)群眾, 要, 更加, 緊密, 地, 團(tuán)結(jié), 在, 黨中央, 周圍]
假如我們想要的切分結(jié)果是:
[我國, 工人, 階級(jí), 和, 廣大, 勞動(dòng), 群眾, 要, 更加, 緊密, 地, 團(tuán)結(jié), 在, 黨中央, 周圍]
也就是要把“工人階級(jí)”細(xì)分為“工人 階級(jí)”,把“勞動(dòng)群眾”細(xì)分為“勞動(dòng) 群眾”,那么我們該怎么辦呢?
我們可以通過在word.refine.path配置項(xiàng)指定的文件classpath:word_refine.txt中增加以下內(nèi)容:
工人階級(jí)=工人 階級(jí)
勞動(dòng)群眾=勞動(dòng) 群眾
然后,我們對分詞結(jié)果進(jìn)行refine:
words = WordRefiner.refine(words);
System.out.println(words);
這樣,就能達(dá)到我們想要的效果:
[我國, 工人, 階級(jí), 和, 廣大, 勞動(dòng), 群眾, 要, 更加, 緊密, 地, 團(tuán)結(jié), 在, 黨中央, 周圍]

我們再看一個(gè)切分例子:
List<Word> words = WordSegmenter.segWithStopWords("在實(shí)現(xiàn)“兩個(gè)一百年”奮斗目標(biāo)的偉大征程上再創(chuàng)新的業(yè)績");
System.out.println(words);
結(jié)果如下:
[在, 實(shí)現(xiàn), 兩個(gè), 一百年, 奮斗目標(biāo), 的, 偉大, 征程, 上, 再創(chuàng), 新的, 業(yè)績]
假如我們想要的切分結(jié)果是:
[在, 實(shí)現(xiàn), 兩個(gè)一百年, 奮斗目標(biāo), 的, 偉大征程, 上, 再創(chuàng), 新的, 業(yè)績]
也就是要把“兩個(gè) 一百年”合并為“兩個(gè)一百年”,把“偉大, 征程”合并為“偉大征程”,那么我們該怎么辦呢?
我們可以通過在word.refine.path配置項(xiàng)指定的文件classpath:word_refine.txt中增加以下內(nèi)容:
兩個(gè) 一百年=兩個(gè)一百年
偉大 征程=偉大征程
然后,我們對分詞結(jié)果進(jìn)行refine:
words = WordRefiner.refine(words);
System.out.println(words);
這樣,就能達(dá)到我們想要的效果:
[在, 實(shí)現(xiàn), 兩個(gè)一百年, 奮斗目標(biāo), 的, 偉大征程, 上, 再創(chuàng), 新的, 業(yè)績]

13、同義標(biāo)注

List<Word> words = WordSegmenter.segWithStopWords("楚離陌千方百計(jì)為無情找回記憶");
System.out.println(words);
結(jié)果如下:
[楚離陌, 千方百計(jì), 為, 無情, 找回, 記憶]
做同義標(biāo)注:
SynonymTagging.process(words);
System.out.println(words);
結(jié)果如下:
[楚離陌, 千方百計(jì)[久有存心, 化盡心血, 想方設(shè)法, 費(fèi)盡心機(jī)], 為, 無情, 找回, 記憶[影象]]
如果啟用間接同義詞:
SynonymTagging.process(words, false);
System.out.println(words);
結(jié)果如下:
[楚離陌, 千方百計(jì)[久有存心, 化盡心血, 想方設(shè)法, 費(fèi)盡心機(jī)], 為, 無情, 找回, 記憶[影像, 影象]]

List<Word> words = WordSegmenter.segWithStopWords("手勁大的老人往往更長壽");
System.out.println(words);
結(jié)果如下:
[手勁, 大, 的, 老人, 往往, 更, 長壽]
做同義標(biāo)注:
SynonymTagging.process(words);
System.out.println(words);
結(jié)果如下:
[手勁, 大, 的, 老人[白叟], 往往[常常, 每每, 經(jīng)常], 更, 長壽[長命, 龜齡]]
如果啟用間接同義詞:
SynonymTagging.process(words, false);
System.out.println(words);
結(jié)果如下:
[手勁, 大, 的, 老人[白叟], 往往[一樣平常, 一般, 凡是, 尋常, 常常, 常日, 平凡, 平居, 平常, 平日, 平時(shí), 往常, 日常, 日常平凡, 時(shí)常, 普通, 每每, 泛泛, 素日, 經(jīng)常, 通俗, 通常], 更, 長壽[長命, 龜齡]]

以詞“千方百計(jì)”為例:
可以通過Word的getSynonym()方法獲取同義詞如:
System.out.println(word.getSynonym());
結(jié)果如下:
[久有存心, 化盡心血, 想方設(shè)法, 費(fèi)盡心機(jī)]
注意:如果沒有同義詞,則getSynonym()返回空集合:Collections.emptyList()

間接同義詞和直接同義詞的區(qū)別如下:
假設(shè):
A和B是同義詞,A和C是同義詞,B和D是同義詞,C和E是同義詞
則:
對于A來說,A B C是直接同義詞
對于B來說,A B D是直接同義詞
對于C來說,A C E是直接同義詞
對于A B C來說,A B C D E是間接同義詞

14、反義標(biāo)注

List<Word> words = WordSegmenter.segWithStopWords("5月初有哪些電影值得觀看");
System.out.println(words);
結(jié)果如下:
[5, 月初, 有, 哪些, 電影, 值得, 觀看]
做反義標(biāo)注:
AntonymTagging.process(words);
System.out.println(words);
結(jié)果如下:
[5, 月初[月底, 月末, 月終], 有, 哪些, 電影, 值得, 觀看]

List<Word> words = WordSegmenter.segWithStopWords("由于工作不到位、服務(wù)不完善導(dǎo)致顧客在用餐時(shí)發(fā)生不愉快的事情,餐廳方面應(yīng)該向顧客作出真誠的道歉,而不是敷衍了事。");
System.out.println(words);
結(jié)果如下:
[由于, 工作, 不到位, 服務(wù), 不完善, 導(dǎo)致, 顧客, 在, 用餐, 時(shí), 發(fā)生, 不愉快, 的, 事情, 餐廳, 方面, 應(yīng)該, 向, 顧客, 作出, 真誠, 的, 道歉, 而不是, 敷衍了事]
做反義標(biāo)注:
AntonymTagging.process(words);
System.out.println(words);
結(jié)果如下:
[由于, 工作, 不到位, 服務(wù), 不完善, 導(dǎo)致, 顧客, 在, 用餐, 時(shí), 發(fā)生, 不愉快, 的, 事情, 餐廳, 方面, 應(yīng)該, 向, 顧客, 作出, 真誠[糊弄, 虛偽, 虛假, 險(xiǎn)詐], 的, 道歉, 而不是, 敷衍了事[一絲不茍, 兢兢業(yè)業(yè), 盡心竭力, 竭盡全力, 精益求精, 誠心誠意]]

以詞“月初”為例:
可以通過Word的getAntonym()方法獲取反義詞如:
System.out.println(word.getAntonym());
結(jié)果如下:
[月底, 月末, 月終]
注意:如果沒有反義詞,getAntonym()返回空集合:Collections.emptyList()

15、拼音標(biāo)注

List<Word> words = WordSegmenter.segWithStopWords("《速度與激情7》的中國內(nèi)陸票房自4月12日上映以來,在短短兩周內(nèi)突破20億人民幣");
System.out.println(words);
結(jié)果如下:
[速度, 與, 激情, 7, 的, 中國, 內(nèi)陸, 票房, 自, 4月, 12日, 上映, 以來, 在, 短短, 兩周, 內(nèi), 突破, 20億, 人民幣]
執(zhí)行拼音標(biāo)注:
PinyinTagging.process(words);
System.out.println(words);
結(jié)果如下:
[速度 sd sudu, 與 y yu, 激情 jq jiqing, 7, 的 d de, 中國 zg zhongguo, 內(nèi)陸 nd neidi, 票房 pf piaofang, 自 z zi, 4月, 12日, 上映 sy shangying, 以來 yl yilai, 在 z zai, 短短 dd duanduan, 兩周 lz liangzhou, 內(nèi) n nei, 突破 tp tupo, 20億, 人民幣 rmb renminbi]

以詞“速度”為例:
可以通過Word的getFullPinYin()方法獲取完整拼音如:sudu
可以通過Word的getAcronymPinYin()方法獲取首字母縮略拼音如:sd

16、Lucene插件:

1、構(gòu)造一個(gè)word分析器ChineseWordAnalyzer
Analyzer analyzer = new ChineseWordAnalyzer();
如果需要使用特定的分詞算法,可通過構(gòu)造函數(shù)來指定:
Analyzer analyzer = new ChineseWordAnalyzer(SegmentationAlgorithm.FullSegmentation);
如不指定,默認(rèn)使用雙向最大匹配算法:SegmentationAlgorithm.BidirectionalMaximumMatching
可用的分詞算法參見枚舉類:SegmentationAlgorithm

2、利用word分析器切分文本
TokenStream tokenStream = analyzer.tokenStream("text", "楊尚川是APDPlat應(yīng)用級(jí)產(chǎn)品開發(fā)平臺(tái)的作者");
//準(zhǔn)備消費(fèi)
tokenStream.reset();
//開始消費(fèi)
while(tokenStream.incrementToken()){
    //詞
    CharTermAttribute charTermAttribute = tokenStream.getAttribute(CharTermAttribute.class);
    //詞在文本中的起始位置
    OffsetAttribute offsetAttribute = tokenStream.getAttribute(OffsetAttribute.class);
    //第幾個(gè)詞
    PositionIncrementAttribute positionIncrementAttribute = tokenStream.getAttribute(PositionIncrementAttribute.class);
    //詞性
    PartOfSpeechAttribute partOfSpeechAttribute = tokenStream.getAttribute(PartOfSpeechAttribute.class);
    //首字母縮略拼音
    AcronymPinyinAttribute acronymPinyinAttribute = tokenStream.getAttribute(AcronymPinyinAttribute.class);
    //完整拼音
    FullPinyinAttribute fullPinyinAttribute = tokenStream.getAttribute(FullPinyinAttribute.class);
    //同義詞
    SynonymAttribute synonymAttribute = tokenStream.getAttribute(SynonymAttribute.class);
    //反義詞
    AntonymAttribute antonymAttribute = tokenStream.getAttribute(AntonymAttribute.class);

    LOGGER.info(charTermAttribute.toString()+" ("+offsetAttribute.startOffset()+" - "+offsetAttribute.endOffset()+") "+positionIncrementAttribute.getPositionIncrement());
    LOGGER.info("PartOfSpeech:"+partOfSpeechAttribute.toString());
    LOGGER.info("AcronymPinyin:"+acronymPinyinAttribute.toString());
    LOGGER.info("FullPinyin:"+fullPinyinAttribute.toString());
    LOGGER.info("Synonym:"+synonymAttribute.toString());
    LOGGER.info("Antonym:"+antonymAttribute.toString());
}
//消費(fèi)完畢
tokenStream.close();

3、利用word分析器建立Lucene索引
Directory directory = new RAMDirectory();
IndexWriterConfig config = new IndexWriterConfig(analyzer);
IndexWriter indexWriter = new IndexWriter(directory, config);

4、利用word分析器查詢Lucene索引
QueryParser queryParser = new QueryParser("text", analyzer);
Query query = queryParser.parse("text:楊尚川");
TopDocs docs = indexSearcher.search(query, Integer.MAX_VALUE);

17、Solr插件:

1、下載word-1.3.jar
下載地址:http://search./remotecontent?filepath=org/apdplat/word/1.3/word-1.3.jar

2、創(chuàng)建目錄solr-5.1.0/example/solr/lib,將word-1.3.jar復(fù)制到lib目錄

3、配置schema指定分詞器
將solr-5.1.0/example/solr/collection1/conf/schema.xml文件中所有的
<tokenizer class="solr.WhitespaceTokenizerFactory"/>和
<tokenizer class="solr.StandardTokenizerFactory"/>全部替換為
<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory"/>
并移除所有的filter標(biāo)簽

4、如果需要使用特定的分詞算法:
<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory" segAlgorithm="ReverseMinimumMatching"/>
segAlgorithm可選值有:  
正向最大匹配算法:MaximumMatching
逆向最大匹配算法:ReverseMaximumMatching
正向最小匹配算法:MinimumMatching
逆向最小匹配算法:ReverseMinimumMatching
雙向最大匹配算法:BidirectionalMaximumMatching
雙向最小匹配算法:BidirectionalMinimumMatching
雙向最大最小匹配算法:BidirectionalMaximumMinimumMatching
全切分算法:FullSegmentation
最少分詞算法:MinimalWordCount
最大Ngram分值算法:MaxNgramScore
如不指定,默認(rèn)使用雙向最大匹配算法:BidirectionalMaximumMatching

5、如果需要指定特定的配置文件:
<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory" segAlgorithm="ReverseMinimumMatching"
        conf="solr-5.1.0/example/solr/nutch/conf/word.local.conf"/>
word.local.conf文件中可配置的內(nèi)容見 word-1.3.jar 中的word.conf文件
如不指定,使用默認(rèn)配置文件,位于 word-1.3.jar 中的word.conf文件

18、ElasticSearch插件:

1、打開命令行并切換到elasticsearch的bin目錄
cd elasticsearch-1.5.1/bin

2、運(yùn)行plugin腳本安裝word分詞插件:
./plugin -u http:///word/archive/v1.2.zip -i word

3、修改文件elasticsearch-1.5.1/config/elasticsearch.yml,新增如下配置:    
index.analysis.analyzer.default.type : "word"
index.analysis.tokenizer.default.type : "word"

4、啟動(dòng)ElasticSearch測試效果,在Chrome瀏覽器中訪問:    
http://localhost:9200/_analyze?analyzer=word&text=楊尚川是APDPlat應(yīng)用級(jí)產(chǎn)品開發(fā)平臺(tái)的作者

5、自定義配置
修改配置文件elasticsearch-1.5.1/plugins/word/word.local.conf

6、指定分詞算法
修改文件elasticsearch-1.5.1/config/elasticsearch.yml,新增如下配置:
index.analysis.analyzer.default.segAlgorithm : "ReverseMinimumMatching"
index.analysis.tokenizer.default.segAlgorithm : "ReverseMinimumMatching"

這里segAlgorithm可指定的值有:
正向最大匹配算法:MaximumMatching
逆向最大匹配算法:ReverseMaximumMatching
正向最小匹配算法:MinimumMatching
逆向最小匹配算法:ReverseMinimumMatching
雙向最大匹配算法:BidirectionalMaximumMatching
雙向最小匹配算法:BidirectionalMinimumMatching
雙向最大最小匹配算法:BidirectionalMaximumMinimumMatching
全切分算法:FullSegmentation
最少分詞算法:MinimalWordCount
最大Ngram分值算法:MaxNgramScore
如不指定,默認(rèn)使用雙向最大匹配算法:BidirectionalMaximumMatching

19、Luke插件:

1、下載http://luke./files/lukeall-4.0.0-ALPHA.jar(國內(nèi)不能訪問)

2、下載并解壓Java中文分詞組件word-1.0-bin.zip:http://pan.baidu.com/s/1dDziDFz

3、將解壓后的 Java中文分詞組件word-1.0-bin/word-1.0 文件夾里面的4個(gè)jar包解壓到當(dāng)前文件夾
用壓縮解壓工具如winrar打開lukeall-4.0.0-ALPHA.jar,將當(dāng)前文件夾里面除了META-INF文件夾、.jar、
.bat、.html、word.local.conf文件外的其他所有文件拖到lukeall-4.0.0-ALPHA.jar里面

4、執(zhí)行命令 java -jar lukeall-4.0.0-ALPHA.jar 啟動(dòng)luke,在Search選項(xiàng)卡的Analysis里面
就可以選擇 org.apdplat.word.lucene.ChineseWordAnalyzer 分詞器了

5、在Plugins選項(xiàng)卡的Available analyzers found on the current classpath里面也可以選擇 
org.apdplat.word.lucene.ChineseWordAnalyzer 分詞器

注意:如果你要自己集成word分詞器的其他版本,在項(xiàng)目根目錄下運(yùn)行mvn install編譯項(xiàng)目,然后運(yùn)行命令
mvn dependency:copy-dependencies復(fù)制依賴的jar包,接著在target/dependency/目錄下就會(huì)有所有
的依賴jar包。其中target/dependency/slf4j-api-1.6.4.jar是word分詞器使用的日志框架,
target/dependency/logback-classic-0.9.28.jar和
target/dependency/logback-core-0.9.28.jar是word分詞器推薦使用的日志實(shí)現(xiàn),日志實(shí)現(xiàn)的配置文件
路徑位于target/classes/logback.xml,target/word-1.3.jar是word分詞器的主jar包,如果需要
自定義詞典,則需要修改分詞器配置文件target/classes/word.conf

已經(jīng)集成好的Luke插件下載(適用于lucene4.0.0) :lukeall-4.0.0-ALPHA-with-word-1.0.jar

已經(jīng)集成好的Luke插件下載(適用于lucene4.10.3):lukeall-4.10.3-with-word-1.2.jar

20、詞向量:

從大規(guī)模語料中統(tǒng)計(jì)一個(gè)詞的上下文相關(guān)詞,并用這些上下文相關(guān)詞組成的向量來表達(dá)這個(gè)詞。
通過計(jì)算詞向量的相似性,即可得到詞的相似性。
相似性的假設(shè)是建立在如果兩個(gè)詞的上下文相關(guān)詞越相似,那么這兩個(gè)詞就越相似這個(gè)前提下的。

通過運(yùn)行項(xiàng)目根目錄下的腳本demo-word-vector-corpus.bat來體驗(yàn)word項(xiàng)目自帶語料庫的效果

如果有自己的文本內(nèi)容,可以使用腳本demo-word-vector-file.bat來對文本分詞、建立詞向量、計(jì)算相似性

分詞算法效果評(píng)估:

1、word分詞 最大Ngram分值算法:
分詞速度:397.73047 字符/毫秒
行數(shù)完美率:59.93%  行數(shù)錯(cuò)誤率:40.06%  總的行數(shù):2533709  完美行數(shù):1518525  錯(cuò)誤行數(shù):1015184
字?jǐn)?shù)完美率:51.56% 字?jǐn)?shù)錯(cuò)誤率:48.43% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):14632098 錯(cuò)誤字?jǐn)?shù):13742392

2、word分詞 全切分算法:
分詞速度:67.032585 字符/毫秒
行數(shù)完美率:57.2%  行數(shù)錯(cuò)誤率:42.79%  總的行數(shù):2533709  完美行數(shù):1449288  錯(cuò)誤行數(shù):1084421
字?jǐn)?shù)完美率:47.95% 字?jǐn)?shù)錯(cuò)誤率:52.04% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):13605742 錯(cuò)誤字?jǐn)?shù):14768748

3、word分詞 雙向最大最小匹配算法:
分詞速度:367.99805 字符/毫秒
行數(shù)完美率:53.06%  行數(shù)錯(cuò)誤率:46.93%  總的行數(shù):2533709  完美行數(shù):1344624  錯(cuò)誤行數(shù):1189085
字?jǐn)?shù)完美率:43.07% 字?jǐn)?shù)錯(cuò)誤率:56.92% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):12221610 錯(cuò)誤字?jǐn)?shù):16152880

4、word分詞 最少分詞算法:
分詞速度:364.40622 字符/毫秒
行數(shù)完美率:47.75%  行數(shù)錯(cuò)誤率:52.24%  總的行數(shù):2533709  完美行數(shù):1209976  錯(cuò)誤行數(shù):1323733
字?jǐn)?shù)完美率:37.59% 字?jǐn)?shù)錯(cuò)誤率:62.4% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):10666443 錯(cuò)誤字?jǐn)?shù):17708047

5、word分詞 雙向最小匹配算法:
分詞速度:657.13635 字符/毫秒
行數(shù)完美率:46.34%  行數(shù)錯(cuò)誤率:53.65%  總的行數(shù):2533709  完美行數(shù):1174276  錯(cuò)誤行數(shù):1359433
字?jǐn)?shù)完美率:36.07% 字?jǐn)?shù)錯(cuò)誤率:63.92% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):10236574 錯(cuò)誤字?jǐn)?shù):18137916

6、word分詞 雙向最大匹配算法:
分詞速度:539.0905 字符/毫秒
行數(shù)完美率:46.18%  行數(shù)錯(cuò)誤率:53.81%  總的行數(shù):2533709  完美行數(shù):1170075  錯(cuò)誤行數(shù):1363634
字?jǐn)?shù)完美率:35.65% 字?jǐn)?shù)錯(cuò)誤率:64.34% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):10117122 錯(cuò)誤字?jǐn)?shù):18257368

7、word分詞 正向最大匹配算法:
分詞速度:662.2127 字符/毫秒
行數(shù)完美率:41.88%  行數(shù)錯(cuò)誤率:58.11%  總的行數(shù):2533709  完美行數(shù):1061189  錯(cuò)誤行數(shù):1472520
字?jǐn)?shù)完美率:31.35% 字?jǐn)?shù)錯(cuò)誤率:68.64% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):8896173 錯(cuò)誤字?jǐn)?shù):19478317

8、word分詞 逆向最大匹配算法:
分詞速度:1082.0459 字符/毫秒
行數(shù)完美率:41.69%  行數(shù)錯(cuò)誤率:58.3%  總的行數(shù):2533709  完美行數(shù):1056515  錯(cuò)誤行數(shù):1477194
字?jǐn)?shù)完美率:30.98% 字?jǐn)?shù)錯(cuò)誤率:69.01% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):8792532 錯(cuò)誤字?jǐn)?shù):19581958

9、word分詞 逆向最小匹配算法:
分詞速度:1906.6315 字符/毫秒
行數(shù)完美率:41.42%  行數(shù)錯(cuò)誤率:58.57%  總的行數(shù):2533709  完美行數(shù):1049673  錯(cuò)誤行數(shù):1484036
字?jǐn)?shù)完美率:31.34% 字?jǐn)?shù)錯(cuò)誤率:68.65% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):8893622 錯(cuò)誤字?jǐn)?shù):19480868

10、word分詞 正向最小匹配算法:
分詞速度:1839.1554 字符/毫秒
行數(shù)完美率:36.7%  行數(shù)錯(cuò)誤率:63.29%  總的行數(shù):2533709  完美行數(shù):930069  錯(cuò)誤行數(shù):1603640
字?jǐn)?shù)完美率:26.72% 字?jǐn)?shù)錯(cuò)誤率:73.27% 總的字?jǐn)?shù):28374490 完美字?jǐn)?shù):7583741 錯(cuò)誤字?jǐn)?shù):20790749

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請遵守用戶 評(píng)論公約

    類似文章 更多