如何進行數(shù)學(xué)應(yīng)用題教學(xué)設(shè)計?簡單應(yīng)用題的解答是進一步學(xué)習(xí)復(fù)合應(yīng)用題的解答的基礎(chǔ),在整個小學(xué)數(shù)學(xué)教育中,簡單應(yīng)用題教學(xué)都占有極其重要的地位。 今天,樸新小編給大家介紹有效的數(shù)學(xué)教學(xué)方法。 數(shù)學(xué)應(yīng)用題教學(xué)一 一、幫助學(xué)生養(yǎng)成良好的審題習(xí)慣。 應(yīng)用的難易不僅取決于數(shù)據(jù)的多少,往往是由應(yīng)用題的情節(jié)部分和數(shù)量關(guān)系交織在一起的復(fù)雜程度所定。同時題目中的敘述是書面語言,對小學(xué)生的理解會有一定的困難,所以解題的首要環(huán)節(jié)和前提就是理解題意,即審題。審題就要讀題,讀題必須認(rèn)真、仔細,通過邊讀邊想掌握題中講的是什么事情,經(jīng)過怎樣,這就是我們常說的應(yīng)用題的條件。結(jié)果怎樣,則是所講的問題。要想弄清楚題中給定的條件是什么,要求問題是什么?不僅要邊讀邊想,在必要情況下還要借助簡單的實物圖或線段圖來輔助理解,這樣能把題目里難以理解的內(nèi)容或抽象的概念簡單化,具體化,把抽象的東西擺在眼前,便于讓學(xué)生容易理解和掌握其題意。 例如,小學(xué)三年級課本中有這樣一道題:雞有24只,鴨的只數(shù)是雞的2倍,歡雞和鴨一共有多少只?題中哪些數(shù)據(jù)與問題有直接聯(lián)系,哪些沒有直接聯(lián)系,如果在邊讀邊想基礎(chǔ)上再加簡單的線段圖幫助分析,學(xué)生就更容易知道條件是什么,要求的問題是什么了,否則對于抽象概念能力較差的部分學(xué)生就難以理解了。實踐證明,學(xué)生不會解答某一應(yīng)用題,往往就是對該題的題意不理解或理解不透徹。一旦了解題意,其數(shù)量關(guān)系也將明了。因此,從這個角度上講,理解題意就等于解答應(yīng)用題中完成一半的任務(wù)。 二、幫助學(xué)生掌握正確的解題步驟。 學(xué)雖然概括解題步驟是在學(xué)習(xí)了復(fù)合應(yīng)用題時才進行的,但在開始應(yīng)用題教學(xué)時就要注意引導(dǎo)學(xué)生按正確的解題步驟解答應(yīng)用題,逐步養(yǎng)成良好的習(xí)慣,特別是檢查驗算和寫好答案的習(xí)慣。 一道題做得對不對,學(xué)生要能自我評價,對的強化,不對的反饋糾正,這實際上是一個推理論證的過程。完成列式計算只解決了“怎樣解答”的問題,而推理論證是解決“為什么這樣解答”的問題。然而很多小學(xué)生不善于從已知量向未知量轉(zhuǎn)化,有時又受生活經(jīng)驗的制約無法檢驗明顯的錯誤,因此,一要教給學(xué)生驗算的方法,如:聯(lián)系實際法、問題條件轉(zhuǎn)化法等;還可以先由師生共同完成,然后過渡到在教師指導(dǎo)下學(xué)生進行,最后發(fā)展成學(xué)生獨立完成。 在教學(xué)中還經(jīng)常遇到學(xué)生不重視寫答案,只寫“是多少”就算完了的現(xiàn)象。答案實際上是很重要的,是一件事情的結(jié)束。我們做事強調(diào)有好的開端,也得有好的結(jié)束,那才是一件完整的事,我們做題就同做工作一樣,應(yīng)該有完美的結(jié)束。因此,不僅要使學(xué)生重視寫答案,還要使學(xué)生學(xué)會寫答案。 數(shù)學(xué)應(yīng)用題教學(xué)二 1.培養(yǎng)學(xué)生認(rèn)真仔細地審題 弄明白題意,認(rèn)真審題是準(zhǔn)確解答應(yīng)用題的先決條件。因此,在教學(xué)中可先讓學(xué)認(rèn)真審題、讀題。俗話說,書讀百遍,其意自現(xiàn)。根據(jù)解題要求讀出題中直接條件和間接條件,構(gòu)建起條件與問題之間的聯(lián)系,確定數(shù)量關(guān)系。審題時還要多多地進行換說法,力求把每一說法的蘊含的運算意義都弄得一清二楚,明明白白,這樣不僅能把題目審?fù)笍兀矣欣诎l(fā)展學(xué)生思維,為學(xué)生打開豐富的解題思路,使學(xué)生學(xué)會運用不同的方法靈活解題。 2.尋找應(yīng)用題中的數(shù)量關(guān)系 數(shù)量關(guān)系是指題目中已知條件、未知條件和問題之間,以及它們各自內(nèi)部之間的相互關(guān)系,簡單地說,數(shù)量關(guān)系就是題目中的相等關(guān)系。找數(shù)量關(guān)系就是用“相等”關(guān)系來表述題目。有的題目數(shù)量關(guān)系復(fù)雜,需要對已知條件 和問題進行全面仔細的分析研究才能找出。只有找出正確無誤的數(shù)量關(guān)系,才能稱得上真正理解了題意,才能正確解決應(yīng)用題。. 3.教學(xué)生分析應(yīng)用題常用的方法 在解題過程中,學(xué)生往往習(xí)慣于模仿例題的解答方法。因此,教師要教給學(xué)生分析應(yīng)用題的推理方法,幫助學(xué)生明確解題思路。常用分析應(yīng)用題的方法有分析法和綜合法,所謂分析法,就是從應(yīng)用題中欲求的問題出發(fā)進行分析,考慮為了解題需要哪些條件,而這些條件哪些是已知的,哪些是未知的,直到未知條件都能在題目中找到為止。 數(shù)學(xué)應(yīng)用題教學(xué)三 做好應(yīng)用題的啟蒙教學(xué) 簡單應(yīng)用題教學(xué),其實從教10以內(nèi)的加減法就已經(jīng)開始。學(xué)生在入學(xué)之初,對漢字還不認(rèn)識,因此不會出現(xiàn)文字?jǐn)⑹龅膽?yīng)用題,對于“應(yīng)用題”、“已知條件”及“問題”也難以理解,主要是與加減法的教學(xué)相結(jié)合引導(dǎo)學(xué)生對每一種運算的意義進行理解,即通過具體事物或直觀教具讓學(xué)生了解運算的意義與應(yīng)用,并將直觀的動作及語言有意識地聯(lián)系起來,初步建立數(shù)量關(guān)系的概念。 此外,在解答簡單應(yīng)用題的教學(xué)過程中,要把分析數(shù)量關(guān)系作為教學(xué)重點,不能交給學(xué)生一些死辦法及解法公式,不然,會使學(xué)生養(yǎng)成死記硬套的習(xí)慣。為了給學(xué)生打好分析數(shù)量關(guān)系的基礎(chǔ),讓學(xué)生逐步能把應(yīng)用題里的生活語言轉(zhuǎn)化為教學(xué)語言,可適當(dāng)做一些文字題的練習(xí)。如:把5和3合并起來是多少?3個4是多少?把12平均分成2份,每份是多少?借用學(xué)生熟悉的實物或圖片演示,教師引導(dǎo)學(xué)生用語言來敘述應(yīng)用題,使學(xué)生認(rèn)識到教師演示及敘述的事物都是常常在他們生活中出現(xiàn)的問題,并且也讓學(xué)生對加減法的意義與應(yīng)用有一個初步的認(rèn)識。在此階段,不能對學(xué)生提出過高的要求。只要求學(xué)生會動手操作,可根據(jù)教師的引導(dǎo)復(fù)述題里告訴了什么,問的是什么,然后對算法加以選擇,寫出算式,口述答案即可。在教學(xué)20以內(nèi)的加減法時,逐步向半文半圖的應(yīng)用題過渡,可訓(xùn)練學(xué)生看著題根據(jù)教師的引導(dǎo)回答:題里說了什么?先告訴了什么?又告訴了什么?問的是什么?然后通過教師的幫助對應(yīng)用題進行復(fù)述。在此基礎(chǔ)上,再出現(xiàn)完全文字?jǐn)⑹龅膽?yīng)用題,學(xué)生就比較容易理解“已知條件”、“問題”及“應(yīng)用題”等術(shù)語了。之后再教學(xué)生如何了解應(yīng)用題的結(jié)構(gòu),兩個已知條件和一個問題及解題步驟與方法。讓學(xué)生對解答簡單應(yīng)用題的步驟進行了解非常重要。在教學(xué)之初就應(yīng)該注意培養(yǎng)學(xué)生養(yǎng)成有步驟地分析及解答應(yīng)用題的良好習(xí)慣。 幫助學(xué)生聯(lián)系生活實際。 《數(shù)學(xué)課程標(biāo)準(zhǔn)》十分強調(diào)數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,在教學(xué)要求中增加了“使學(xué)生感受數(shù)學(xué)與現(xiàn)實生活的聯(lián)系”,這不僅要求應(yīng)用題的選材要密切聯(lián)系學(xué)生的生活實際,而且還要求數(shù)學(xué)教學(xué)必須從學(xué)生熟悉的生活情境和感興趣的事物出發(fā),為他們提供觀察和操作的機會,使他們有更多的機會從周圍熟悉的事物中學(xué)習(xí)數(shù)學(xué)和理解數(shù)學(xué),體會到數(shù)學(xué)就在身邊,感受到數(shù)學(xué)的趣味和作用。教學(xué)中,要讓應(yīng)用題的情節(jié)具有現(xiàn)實性,盡量貼近學(xué)生的生活實際,除應(yīng)用題本身的內(nèi)容要聯(lián)系實際外,還要擴大聯(lián)系實際的范圍,如在百分?jǐn)?shù)應(yīng)用題中增加利息的計算,以及一些保險、納稅等內(nèi)容,從而提高學(xué)生解決簡單的實際問題的能力。 例如:三(1)班今天要進行植樹活動,要求分兩組進行植樹,即男生、女生各一組,老師準(zhǔn)備了40棵樹苗,你認(rèn)為怎樣分較合理?學(xué)生提出兩種意見:一是平均分,即男、女生分到同樣多的樹苗;二是按人數(shù)多少分,即人多分到的樹苗多,人少分到的樹苗少。通過討論、爭議取得共識:按人數(shù)分較合理。然后引導(dǎo)學(xué)生提出問題:男、女生各分到多少棵樹苗?當(dāng)然,題中還缺少男、女生人數(shù)的條件,通過這樣的設(shè)計,使學(xué)生感到面臨的問題的確是他們自己的問題,從而產(chǎn)生了解決問題的心向,主動地參與探索,尋求解決問題的方法。再如,求兩數(shù)相差多少的應(yīng)用題:“學(xué)校養(yǎng)了12只白兔,7只黑兔,白兔比黑兔多幾只?”時,讓學(xué)生先擺出12只“白兔”,7只“黑兔”,使“白兔”和“黑兔”一一對應(yīng)。然后引導(dǎo)學(xué)生說出白兔跟黑兔相比;白兔多,黑兔少;白兔可以分成哪兩部分,理解從 12只白兔中去掉和黑兔只數(shù)同樣多的部分,剩下的部分就是白兔比黑兔多的只數(shù),所以要用減法計算。通過這樣的操作和分析,學(xué)生在大腦中形成關(guān)于這種應(yīng)用題中較大數(shù)與較小數(shù)的數(shù)量關(guān)系的表象,理解為什么用減法計算,從而提高學(xué)生分析和解答應(yīng)用題的能力。 |
|