小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

TensorFlow Docker 要求安裝nvidia-docker2步驟

 知識(shí)庫(kù)2020 2020-02-09

參考官網(wǎng) https://github.com/NVIDIA/nvidia-docker

為什么使用nvidia-docker2  https://www./a/37002.html

--------------實(shí)踐步驟如下--------------------

一、安裝驅(qū)動(dòng)參考最新方法

https://blog.csdn.net/smcaa/article/details/86482872

sudo apt update

安裝python庫(kù)

sudo apt-get install software-properties-common python-software-properties

1. 打開ubuntu的一個(gè)終端:然后輸入:

$ sudo add-apt-repository ppa:graphics-drivers/ppa

然后更新源:

$ sudo apt update

2.查看當(dāng)前系統(tǒng)推薦你安裝的驅(qū)動(dòng)版本

$ ubuntu-drivers devices

== /sys/devices/pci0000:00/0000:00:1c.0/0000:01:00.0 ==

modalias : pci:v000010DEd00001D10sv000017AAsd0000225Ebc03sc02i00

vendor   : NVIDIA Corporation

model    : GP108M [GeForce MX150]

driver   : nvidia-driver-410 - third-party free

driver   : nvidia-driver-396 - third-party free

driver   : nvidia-driver-390 - third-party free

driver   : nvidia-driver-415 - third-party free recommended

driver   : xserver-xorg-video-nouveau - distro free builtin

那么顯而易見,推薦我們安裝nvidia-driver-415這個(gè),那我們就安裝這個(gè)最新的

3.輸入命令:

$ sudo ubuntu-drivers autoinstall

懶人操作,用這種最簡(jiǎn)單的命令,讓系統(tǒng)幫你安裝好N家驅(qū)動(dòng)所需要的所有顯卡驅(qū)動(dòng)。

4.安裝好之后,輸入命令:

$ reboot

5.重啟之后,我們要檢驗(yàn)以下N家的驅(qū)動(dòng)是否安裝好,那么我們?cè)诿疃溯斎耄?/p>

$ nvidia-smi

此時(shí)問題出來了,我們?cè)诮K端看到的不是驅(qū)動(dòng)和顯卡的信息,而是.........

“NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.”

---------------------重啟服務(wù)器后,重試nvidia-smi查看

~$ nvidia-smi

Mon Jan 14 18:56:07 2019       

+-----------------------------------------------------------------------------+

| NVIDIA-SMI 415.25       Driver Version: 415.25       CUDA Version: 10.0     |

|-------------------------------+----------------------+----------------------+

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |

|===============================+======================+======================|

|   0  GeForce MX150       Off  | 00000000:01:00.0 Off |                  N/A |

| N/A   48C    P0    N/A /  N/A |    958MiB /  2002MiB |      3%      Default |

+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+

| Processes:                                                       GPU Memory |

|  GPU       PID   Type   Process name                             Usage      |

|=============================================================================|

|    0      1418      G   /usr/lib/xorg/Xorg                            81MiB |

|    0      1609      G   /usr/bin/gnome-shell                          95MiB |

|    0      2903      C   /usr/bin/python3                             779MiB |

+-----------------------------------------------------------------------------+

說明我們的驅(qū)動(dòng)裝好了,接下來就可以繼續(xù)遨游了。

二、安裝docker

root@ssli-centos7:~$ curl -fsSL https://get. | bash -s docker --mirror Aliyun

root@ssli-centos7:~$ systemctl start docker

root@ssli-centos7:~$ systemctl status docker

root@ssli-centos7:~$ systemctl enable docker

sudo apt update

三、安裝nvidia-docker2   ubutu安裝過程---已實(shí)測(cè) 參考官網(wǎng) https://github.com/NVIDIA/nvidia-docker

安裝前,就刪除舊版本的nvidia-docker  參考https://blog.csdn.net/y19930105/article/details/80763467 

四、使用支持 GPU 的映像的示例 安裝tensorflow-gpu-py3  

注意是python3版本 參考官網(wǎng)https://tensorflow.google.cn/install/docker#gpu_support

1.啟動(dòng) TensorFlow Docker 容器tensorflow-gpu-py3

docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu-py3 \

      python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"

2.在配置 TensorFlow 的容器中啟動(dòng) bash shell 會(huì)話。注意啟動(dòng)時(shí)一定要使用--runtime=nvidia,要不然docker容器里找不顯卡

docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu-py3 /bin/bash

1.進(jìn)入容器

root@iZwz9aa80jpvwyws02urj6Z:~# docker ps

CONTAINER ID        IMAGE                                  COMMAND            CREATED            STATUS              PORTS              NAMES

293b73e02a6d        tensorflow/tensorflow:latest-gpu-py3  "/bin/bash"        2 days ago          Up 2 days                              heuristic_liskov

root@iZwz9aa80jpvwyws02urj6Z:~# docker exec -it 293b73e02a6d /bin/bash

2.查看nividia驅(qū)動(dòng) root@293b73e02a6d:/# nvcc -V

----------------------------------------------------------------------------------------------------------------------------

注意點(diǎn)::

一.【Ubuntu】修改Ubuntu的apt-get源為國(guó)內(nèi)鏡像源的方法 https://blog.csdn.net/zgljl2012/article/details/79065174

1、原文件備份

sudo cp /etc/apt/sources.list /etc/apt/sources.list.bak

2、編輯源列表文件

sudo vim /etc/apt/sources.list

3、將原來的列表刪除,添加如下內(nèi)容(中科大鏡像源)

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse

deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse

deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse

deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse

deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse

deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse

4、運(yùn)行sudo apt-get update

二、PIP 更換國(guó)內(nèi)安裝源  https://blog.csdn.net/yuzaipiaofei/article/details/80891108

永久修改:

linux:

修改 ~/.pip/pip.conf (沒有就創(chuàng)建一個(gè)), 內(nèi)容如下:

[global]

index-url = https://pypi.tuna./simple

三、物體檢測(cè)時(shí)需要的安裝包

apt-get update

pip install --upgrade keras

1.執(zhí)行物體檢測(cè)腳本

root@8f9e0e5631af:/home/work/recognition/keras-YOLOv3-mobilenet# python train_Mobilenet.py -h

ImportError: No module named 'PIL'

2.安裝

root@8f9e0e5631af:/home/work/recognition/keras-YOLOv3-mobilenet# pip install pillow

root@8f9e0e5631af:/home/work/recognition/keras-YOLOv3-mobilenet# pip install matplotlib

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多