一、應(yīng)該掌握的基本概念(原來的要求,了解即可) 1.數(shù)學(xué)十大核心概念: 在以往的課標(biāo)中,核心概念是數(shù)感、符號感、空間觀念、統(tǒng)計觀念、應(yīng)用意識、推理能力,總共是六個,而新課標(biāo)將之改為了十個:數(shù)感、符號意識、運算能力、模型思想、空間觀念、幾何直觀、推理能力、數(shù)據(jù)分析觀念、應(yīng)用意識、創(chuàng)新意識。? (1)數(shù)感主要是指關(guān)于數(shù)與數(shù)量、數(shù)量關(guān)系、運算結(jié)果估計等方面的感悟。建立數(shù)感有助于學(xué)生理解現(xiàn)實生活中數(shù)的意義,理解或表述具體情境中的數(shù)量關(guān)系。? (2)符號意識主要是指能夠理解并且運用符號表示數(shù)、數(shù)量關(guān)系和變化規(guī)律;知道使用符號可以進行運算和推理,得到的結(jié)論具有一般性。建立符號意識有助于學(xué)生理解符號的使用是數(shù)學(xué)表達和進行數(shù)學(xué)思考的重要形式。? (3)空間觀念主要是指根據(jù)物體特征抽象出幾何圖形,根據(jù)幾何圖形想象出所描述的實際物體;想象出物體的方位和相互之間的位置關(guān)系;描述圖形的運動和變化;依據(jù)語言的描述畫出圖形等。? (4)幾何直觀主要是指利用圖形描述和分析問題。借助幾何直觀可以把復(fù)雜的數(shù)學(xué)問題變得簡明、形象,有助于探索解決問題的思路,預(yù)測結(jié)果。幾何直觀可以幫助學(xué)生直觀地理解數(shù)學(xué),在整個數(shù)學(xué)學(xué)習(xí)過程中都發(fā)揮著重要作用。? (5)數(shù)據(jù)分析觀念包括:了解在現(xiàn)實生活中有許多問題應(yīng)當(dāng)先做調(diào)查研究,收集數(shù)據(jù),通過分析做出判斷,體會數(shù)據(jù)中蘊涵著信息;了解對于同樣的數(shù)據(jù)可以有多種分析的方法,需要根據(jù)問題的背景選擇合適的方法;通過數(shù)據(jù)分析體驗隨機性,一方面對于同樣的事情每次收集到的數(shù)據(jù)可能不同,另一方面只要有足夠的數(shù)據(jù)就可能從中發(fā)現(xiàn)規(guī)律。? (6)運算能力主要是指能夠根據(jù)法則和運算律正確地進行運算的能力。培養(yǎng)運算能力有助于學(xué)生理解運算的算理,尋求合理簡潔的運算途徑解決問題。? (7)推理能力的發(fā)展應(yīng)貫穿在整個數(shù)學(xué)學(xué)習(xí)過程中。推理是數(shù)學(xué)的基本思維方式,也是人們學(xué)習(xí)和生活中經(jīng)常使用的思維方式。推理一般包括合情推理和演繹推理,合情推理是從已有的事實出發(fā),憑借經(jīng)驗和直覺,通過歸納和類比等推斷某些結(jié)果;演繹推理是從已有的事實(包括定義、公理、定理等)和確定的規(guī)則(包括運算的定義、法則、順序等)出發(fā),按照邏輯推理的法則證明和計算。在解決問題的過程中,合情推理用于探索思路,發(fā)現(xiàn)結(jié)論;演繹推理用于證明結(jié)論。? (8)模型思想的建立是學(xué)生體會和理解數(shù)學(xué)與外部世界聯(lián)系的基本途徑。建立和求解模型的過程包括:從現(xiàn)實生活或具體情境中抽象出數(shù)學(xué)問題,用數(shù)學(xué)符號建立方程、不等式、函數(shù)等表示數(shù)學(xué)問題中的數(shù)量關(guān)系和變化規(guī)律,求出結(jié)果、并討論結(jié)果的意義。這些內(nèi)容的學(xué)習(xí)有助于學(xué)生初步形成模型思想,提高學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用意識。? (9)應(yīng)用意識有兩個方面的含義,一方面有意識利用數(shù)學(xué)的概念、原理和方法解釋現(xiàn)實世界中的現(xiàn)象,解決現(xiàn)實世界中的問題;另一方面,認識到現(xiàn)實生活中蘊涵著大量與數(shù)量和圖形有關(guān)的問題,這些問題可以抽象成數(shù)學(xué)問題,用數(shù)學(xué)的方法予以解決。在整個數(shù)學(xué)教育的過程中都應(yīng)該培養(yǎng)學(xué)生的應(yīng)用意識,綜合實踐活動是培養(yǎng)應(yīng)用意識很好的載體。? (10)創(chuàng)新意識的培養(yǎng)是現(xiàn)代數(shù)學(xué)教育的基本任務(wù),應(yīng)體現(xiàn)在數(shù)學(xué)教與學(xué)的過程之中。學(xué)生自己發(fā)現(xiàn)和提出問題是創(chuàng)新的基礎(chǔ);獨立思考、學(xué)會思考是創(chuàng)新的核心;歸納概括得到猜想和規(guī)律,并加以驗證,是創(chuàng)新的重要方法。創(chuàng)新意識的培養(yǎng)應(yīng)該從義務(wù)教育階段做起,貫穿數(shù)學(xué)教育的始終。?
? 那么這些核心概念到底有何意義呢??? (1)應(yīng)該注意到,這些核心概念的內(nèi)涵在性質(zhì)上是體現(xiàn)的學(xué)習(xí)主體——學(xué)生的特征,它們涉及的是學(xué)生在數(shù)學(xué)學(xué)習(xí)中應(yīng)該建立和培養(yǎng)的關(guān)于數(shù)學(xué)的感悟、觀念、意識、思想、能力等,因此,可以認為,它們是學(xué)生在義務(wù)教育階段數(shù)學(xué)課程中最應(yīng)培養(yǎng)的數(shù)學(xué)素養(yǎng),是促進學(xué)生發(fā)展的重要方面。? (2)《新標(biāo)準(zhǔn)》將這些核心概念放在課程內(nèi)容設(shè)計欄目下提出,是想表明,這些概念不是設(shè)計者超乎于數(shù)學(xué)課程內(nèi)容之上外加的,而是實實在在蘊涵于具體的課程內(nèi)容之中,或者與課程內(nèi)容緊密結(jié)合的。從這一意義上看,核心概念往往是一類課程內(nèi)容的核心或聚焦點,它有利于我們把握課程內(nèi)容的線索和層次,抓住教學(xué)中的關(guān)鍵。并在數(shù)學(xué)內(nèi)容的教學(xué)中有機地去發(fā)展學(xué)生的數(shù)學(xué)素養(yǎng)。? (3)核心概念本質(zhì)上體現(xiàn)的是數(shù)學(xué)的基本思想。數(shù)學(xué)基本思想集中反映為數(shù)學(xué)抽象、數(shù)學(xué)推理和數(shù)學(xué)模型思想。這些思想是數(shù)學(xué)學(xué)習(xí)中的重要目標(biāo)。不難看出,核心概念對數(shù)學(xué)基本思想的體現(xiàn)是鮮明的。比如,與“數(shù)與代數(shù)”部分內(nèi)容直接關(guān)聯(lián)的數(shù)感、符號意識、運算能力、推理能力和模型思想等核心概念就不同程度的直接體現(xiàn)了抽象、推理和模型的基本思想要求。這啟示我們,核心概念的教學(xué)要更關(guān)注其數(shù)學(xué)思想本質(zhì)。? (4)這些核心概念都是數(shù)學(xué)課程的目標(biāo)點,也應(yīng)該成為數(shù)學(xué)課堂教學(xué)的目標(biāo),僅以“數(shù)學(xué)思考”和“問題解決”部分的目標(biāo)設(shè)定來看,《新標(biāo)準(zhǔn)》就提出了:“建立數(shù)感、符號意識和空間觀念,初步形成幾何直觀和運算能力”;“發(fā)展數(shù)據(jù)分析觀念,感受隨機現(xiàn)象”;“發(fā)展合情推理和演繹推理能力”;“增強應(yīng)用意識,提高實踐能力”;“體驗解決問題方法的多樣性,發(fā)展創(chuàng)新意識”。這些目標(biāo)表述幾乎涵蓋了所有的核心概念。? 所以,把握好這些核心概念無論對于教師教學(xué)和學(xué)生學(xué)習(xí)都是極為重要的。 2.六大核心素養(yǎng) 一數(shù)學(xué)抽象 數(shù)學(xué)抽象是指舍去事物的一切物理屬性,得到數(shù)學(xué)研究對象的思維過程。主要包括:從數(shù)量與數(shù)量關(guān)系、圖形與圖形關(guān)系中抽象出數(shù)學(xué)概念及概念之間的關(guān)系,從事物的具體背景中抽象出一般規(guī)律和結(jié)構(gòu),并且用數(shù)學(xué)符號或者數(shù)學(xué)術(shù)語予以表征。 數(shù)學(xué)抽象是數(shù)學(xué)的基本思想,是形成理性思維的重要基礎(chǔ),反映了數(shù)學(xué)的本質(zhì)特征,貫穿在數(shù)學(xué)的產(chǎn)生、發(fā)展、應(yīng)用的過程中。數(shù)學(xué)抽象使得數(shù)學(xué)成為高度概括、表達準(zhǔn)確、結(jié)論一般、有序多級的系統(tǒng)。 在數(shù)學(xué)抽象核心素養(yǎng)的形成過程中,積累從具體到抽象的活動經(jīng)驗。學(xué)生能更好地理解數(shù)學(xué)概念、命題、方法和體系,能通過抽象、概括去認識、理解、把握事物的數(shù)學(xué)本質(zhì),能逐漸養(yǎng)成一般性思考問題的習(xí)慣,能在其他學(xué)科的學(xué)習(xí)中主動運用數(shù)學(xué)抽象的思維方式解決問題。 二邏輯推理 邏輯推理是指從一些事實和命題出發(fā),依據(jù)邏輯規(guī)則推出一個命題的思維過程。主要包括兩類:一類是從特殊到一般的推理,推理形式主要有歸納、類比;一類是從一般到特殊的推理,推理形式主要有演繹。 邏輯推理是得到數(shù)學(xué)結(jié)論、構(gòu)建數(shù)學(xué)體系的重要方式,是數(shù)學(xué)嚴(yán)謹(jǐn)性的基本保證,是人們在數(shù)學(xué)活動中進行交流的基本思維品質(zhì)。 在邏輯推理核心素養(yǎng)的形成過程中,學(xué)生能夠發(fā)現(xiàn)問題和提出命題;能掌握推理的基本形式,表述論證的過程;能理解數(shù)學(xué)知識之間的聯(lián)系,建構(gòu)知識框架;形成有論據(jù)、有條理、合乎邏輯的思維品質(zhì),增強數(shù)學(xué)交流能力。 三數(shù)學(xué)建模 數(shù)學(xué)建模是對現(xiàn)實問題進行數(shù)學(xué)抽象,用數(shù)學(xué)語言表達問題、用數(shù)學(xué)知識與方法構(gòu)建模型解決問題的過程。主要包括:在實際情境中從數(shù)學(xué)的視角發(fā)現(xiàn)問題、提出問題,分析問題、構(gòu)建模型,求解結(jié)論,驗證結(jié)果并改進模型,最終解決實際問題。 數(shù)學(xué)模型構(gòu)建了數(shù)學(xué)與外部世界的橋梁,是數(shù)學(xué)應(yīng)用的重要形式。數(shù)學(xué)建模是應(yīng)用數(shù)學(xué)解決實際問題的基本手段,也是推動數(shù)學(xué)發(fā)展的動力。 在數(shù)學(xué)建模核心素養(yǎng)的形成過程中,積累用數(shù)學(xué)解決實際問題的經(jīng)驗。學(xué)生能夠在實際情境中發(fā)現(xiàn)和提出問題;能夠針對問題建立數(shù)學(xué)模型;能夠運用數(shù)學(xué)知識求解模型,并嘗試基于現(xiàn)實背景驗證模型和完善模型;能夠提升應(yīng)用能力,增強創(chuàng)新意識。 四直觀想象 直觀想象是指借助幾何直觀和空間想象感知事物的形態(tài)與變化,利用圖形理解和解決數(shù)學(xué)問題的過程。主要包括:借助空間認識事物的位置關(guān)系、形態(tài)變化與運動規(guī)律;利用圖形描述、分析數(shù)學(xué)問題;建立形與數(shù)的聯(lián)系;構(gòu)建數(shù)學(xué)問題的直觀模型,探索解決問題的思路。 直觀想象是發(fā)現(xiàn)和提出數(shù)學(xué)問題、分析和解決數(shù)學(xué)問題的重要手段,是探索和形成論證思路、進行邏輯推理、構(gòu)建抽象結(jié)構(gòu)的思維基礎(chǔ)。 在直觀想象核心素養(yǎng)的形成過程中,學(xué)生能夠進一步發(fā)展幾何直觀和空間想象能力,增強運用圖形和空間想象思考問題的意識,提升數(shù)形結(jié)合的能力,感悟事物的本質(zhì),培養(yǎng)創(chuàng)新思維。 五數(shù)學(xué)運算 數(shù)學(xué)運算是指在明晰運算對象的基礎(chǔ)上,依據(jù)運算法則解決數(shù)學(xué)問題的過程。主要包括:理解運算對象,掌握運算法則,探究運算方向,選擇運算方法,設(shè)計運算程序,求得運算結(jié)果等。 數(shù)學(xué)運算是數(shù)學(xué)活動的基本形式,也是演繹推理的一種形式,是得到數(shù)學(xué)結(jié)果的重要手段。數(shù)學(xué)運算是計算機解決問題的基礎(chǔ)。 在數(shù)學(xué)運算核心素養(yǎng)的形成過程中,學(xué)生能夠進一步發(fā)展數(shù)學(xué)運算能力;能有效借助運算方法解決實際問題;能夠通過運算促進數(shù)學(xué)思維發(fā)展,養(yǎng)成程序化思考問題的習(xí)慣;形成一絲不茍、嚴(yán)謹(jǐn)求實的科學(xué)精神。 六數(shù)據(jù)分析 數(shù)據(jù)分析是指針對研究對象獲得相關(guān)數(shù)據(jù),運用統(tǒng)計方法對數(shù)據(jù)中的有用信息進行分析和推斷,形成知識的過程。主要包括:收集數(shù)據(jù),整理數(shù)據(jù),提取信息,構(gòu)建模型對信息進行分析、推斷,獲得結(jié)論。 數(shù)據(jù)分析是大數(shù)據(jù)時代數(shù)學(xué)應(yīng)用的主要方法,已經(jīng)深入到現(xiàn)代社會生活和科學(xué)研究的各個方面。 在數(shù)據(jù)分析核心素養(yǎng)的形成過程中,學(xué)生能夠提升數(shù)據(jù)處理的能力,增強基于數(shù)據(jù)表達現(xiàn)實問題的意識,養(yǎng)成通過數(shù)據(jù)思考問題的習(xí)慣,積累依托數(shù)據(jù)探索事物本質(zhì)、關(guān)聯(lián)和規(guī)律的活動經(jīng)驗。 二、教學(xué)基本程序 天平——————式子——————分類 一級抽象 —— —— —— 二級抽象 數(shù)學(xué)建模 —— —— —— 關(guān)鍵詞呈現(xiàn)
|
|