小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

Python pandas計(jì)算數(shù)據(jù)相關(guān)系數(shù)

 __天眼__ 2019-10-13

本文主要演示pandas中DataFrame對象corr()方法的用法,該方法用來計(jì)算DataFrame對象中所有列之間的相關(guān)系數(shù)(包括pearson相關(guān)系數(shù)、Kendall Tau相關(guān)系數(shù)和spearman秩相關(guān))。

>>> import numpy as np
>>> import pandas as pd

>>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10),
     'B':np.random.randint(1, 100, 10),
     'C':np.random.randint(1, 100, 10)})
>>> df
     A   B   C
0   5  91   3
1  90  15  66
2  93  27   3
3  70  44  66
4  27  14  10
5  35  46  20
6  33  14  69
7  12  41  15
8  28  62  47
9  15  92  77
>>> df.corr()  # pearson相關(guān)系數(shù)
          A              B              C
A  1.000000 -0.560009  0.162105
B -0.560009  1.000000  0.014687
C  0.162105  0.014687  1.000000
>>> df.corr('kendall') # Kendall Tau相關(guān)系數(shù)

          A              B              C
A  1.000000 -0.314627  0.113666
B -0.314627  1.000000  0.045980
C  0.113666  0.045980  1.000000
>>> df.corr('spearman') # spearman秩相關(guān)

          A              B              C
A  1.000000 -0.419455  0.128051
B -0.419455  1.000000  0.067279
C  0.128051  0.067279  1.000000

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多