小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

AI助力新藥研發(fā),制藥企業(yè)升級“2.0”

 昵稱nujb1wWk 2019-09-11


近日,醫(yī)療技術(shù)公司Atomwise宣布與禮來簽署了一項多年期合作協(xié)議。根據(jù)協(xié)議,禮來獲得Atomwise專有的AI藥物勘探技術(shù)的使用許可權(quán),以開展臨床前藥物發(fā)現(xiàn)工作。

兩家公司還可以根據(jù)禮來選擇的至多10個藥物目標(biāo)進(jìn)行合作,每個目標(biāo)完成里程碑事件后,Atomwise都可獲得100萬美元的資金,并且有資格獲得高達(dá)5.5億美元的潛在開發(fā)和商業(yè)化里程碑資金。作為協(xié)議的一部分,Atomwise可以在禮來選擇不進(jìn)入臨床測試的合作目標(biāo)中開發(fā)藥物。

Lilly并不是第一家與Atomwise簽署合作協(xié)議的制藥公司,該公司與60多家生物制藥公司和學(xué)術(shù)機(jī)構(gòu)建立了合作伙伴關(guān)系。Atomwise表示,它現(xiàn)在支持19個國家100多所大學(xué)和醫(yī)院的發(fā)現(xiàn)項目,遍布每個主要治療領(lǐng)域。例如,與Atomwise合作的其他生物制藥巨頭包括AbbVie和Merck&Co、輝瑞公司等。

AI助力新藥研發(fā)的六大應(yīng)用場景

近年來,人工智能技術(shù)(AI)與醫(yī)療健康領(lǐng)域的融合不斷加深。AI在醫(yī)療領(lǐng)域主要應(yīng)用場景包括語音錄入病歷、醫(yī)療影像輔助診斷、藥物研發(fā)、醫(yī)療機(jī)器人和個人健康大數(shù)據(jù)的智能分析等。

藥物研發(fā)是AI技術(shù)應(yīng)用的重要場景之一。藥物研發(fā)要經(jīng)歷靶點的發(fā)現(xiàn)與驗證、先導(dǎo)化合物的發(fā)現(xiàn)與優(yōu)化、候選化合物的挑選及開發(fā)和臨床研究等多個階段。傳統(tǒng)的藥物研發(fā)耗時耗力,且成功率低。AI助力藥物研發(fā),可大大縮短藥物研發(fā)時間、提高研發(fā)效率并控制研發(fā)成本。

目前制藥企業(yè)紛紛布局AI領(lǐng)域,主要應(yīng)用在新藥發(fā)現(xiàn)和臨床試驗階段。

主要有以下六大應(yīng)用場景:

1.海量文獻(xiàn)信息分析整合

對于藥物研發(fā)工作者來說,最讓他們頭疼的事如何去甄別每天產(chǎn)生的海量科研信息。而人工智能技術(shù)恰恰可以從這些散亂無章的海量信息中提取出能夠推動藥物研發(fā)的知識,提出新的可以被驗證的假說,從而加速藥物研發(fā)的過程。

英國生物科技公司Benevolent Bio(隸屬于 Benevolent AI),利用技術(shù)平臺JACS(Judgment Augmented Cognition System),從全球范圍內(nèi)海量的學(xué)術(shù)論文、專利、臨床試驗結(jié)果、患者記錄等數(shù)據(jù)中,提取出有用的信息,發(fā)現(xiàn)新藥研發(fā)的蛛絲馬跡。

2017年,借助JACS的分析能力,Benevolent Bio 標(biāo)記了100個可用于治療肌萎縮性側(cè)索硬化癥(ALS)的潛在化合物,從中篩選出5個化合物。經(jīng)過英國謝菲爾德神經(jīng)轉(zhuǎn)化研究所的小鼠試驗,證實4個化合物在治愈運動神經(jīng)衰退方面確有療效。4/5的有效篩選率,這是研究人員之前從未想過的。

位于英國倫敦的BenevolentAI成立于2013年,是一家致力于AI技術(shù)開發(fā)和應(yīng)用的公司,是歐洲大的AI初創(chuàng)公司。他們的目標(biāo)是建立人們期盼已久的“制藥企業(yè)2.0”,利用AI助力新藥開發(fā),降低臨床試驗的失敗率。自2013年以來,Benevolent AI已經(jīng)開發(fā)出24個候選藥物,且已經(jīng)有藥物進(jìn)入臨床IIb期試驗階段。

國際制藥巨頭之一的強(qiáng)生公司已經(jīng)與Benevolent AI達(dá)成合作協(xié)議,強(qiáng)生將一些已經(jīng)進(jìn)入臨床階段的試驗藥物連帶一起特許給Benevolent AI,而Benevolent AI將利用人工智能系統(tǒng)來指導(dǎo)臨床試驗的進(jìn)行和數(shù)據(jù)的收集。

2.化合物高通量篩選

化合物篩選,是指通過規(guī)范化的實驗手段,從大量化合物或者新化合物中選擇對某一特定作用靶點具有較高活性的化合物的過程。而要從數(shù)以萬計的化合物分子中篩選出符合活性指標(biāo)的化合物,往往需要較長的時間和成本。

AI 技術(shù)可以通過對現(xiàn)有化合物數(shù)據(jù)庫信息的整合和數(shù)據(jù)提取、機(jī)器學(xué)習(xí),提取大量化合物與毒性、有效性的關(guān)鍵信息,既避免了盲人摸象般的試錯路徑,還可以大幅提高篩選的成功率。

典型代表是硅谷公司Atomwise。Atomwise公司成立于2012年,其核心產(chǎn)品為AtomNet是一種基于深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的虛擬藥物發(fā)現(xiàn)平臺。AtomNet就像一位人類化學(xué)家,使用強(qiáng)大的深度學(xué)習(xí)算法和計算能力,來分析數(shù)以百萬計的潛在新藥數(shù)據(jù)。目前,AtomNet已經(jīng)學(xué)會識別重要的化學(xué)基團(tuán),如氫鍵、芳香度和單鍵碳,同時該系統(tǒng)可以分析化合物的構(gòu)效關(guān)系,識別醫(yī)藥化學(xué)中的基礎(chǔ)模塊,用于新藥發(fā)現(xiàn)和評估新藥風(fēng)險。

AtomNet在抗腫瘤藥物、神經(jīng)系統(tǒng)疾病藥物、抗病毒藥物、抗寄生蟲藥和抗生素藥物的藥物篩選方面表現(xiàn)出色。例如,2015年AtomNet僅用一周模擬出2種有潛力用于埃博拉病毒治療的化合物。Atomwise正與全球知名藥企和大學(xué)院校進(jìn)行合作,其中包括輝瑞、默克、abbvie和哈佛大學(xué)等。

類似于Atomwise ,現(xiàn)在有一系列人工智能公司專注于藥物分子篩選,包括Recursion Pharmaceuticals、BenevolentAI、TwoXAR、Cyclica和Reverie Labs等。

3.發(fā)掘藥物靶點

現(xiàn)代新藥研究與開發(fā)的關(guān)鍵是尋找、確定和制備藥物靶點。靶點是指藥物在體內(nèi)的作用結(jié)合位點,包括基因位點、受體、酶、離子通道和核酸等生物大分子。

典型代表是Exscientia公司,Exscientia與葛蘭素史克(GSK)在藥物研發(fā)達(dá)成戰(zhàn)略合作。Exscientia 通過AI藥物研發(fā)平臺為GSK的10個疾病靶點開發(fā)創(chuàng)新小分子藥物。

Exscientia開發(fā)的AI系統(tǒng)可以從每個設(shè)計周期里的現(xiàn)有數(shù)據(jù)資源中學(xué)習(xí),其原理與人類的學(xué)習(xí)方式相似,但AI在識別多種微妙變化以平衡藥效、選擇性和藥代動力學(xué)方面要更加高效。其AI系統(tǒng)完成新藥候選的時間和資金成本只需傳統(tǒng)方法的1/4。目前該公司與國際多家知名藥企形成戰(zhàn)略合作,包括強(qiáng)生、默克和賽諾菲等。

4.預(yù)測藥物分子動力學(xué)指標(biāo)(ADMET)

ADMET包括藥物的吸收、分配、代謝、排泄和毒性。預(yù)測ADMET是當(dāng)代藥物設(shè)計和藥物篩選中十分重要的方法。過去藥物ADMET性質(zhì)研究以體外研究技術(shù)與計算機(jī)模擬等方法相結(jié)合,研究藥物在生物體內(nèi)的動力學(xué)表現(xiàn)。目前市場中有數(shù)十種計算機(jī)模擬軟件,包括ADMET Predicator、MOE、Discovery Studio和Shrodinger等。該類軟件現(xiàn)已在國內(nèi)外的藥品監(jiān)管部門、制藥企業(yè)和研究院所得到了廣泛應(yīng)用。

典型的代表包括晶泰科技(XtalPi)、Numerate等。為了進(jìn)一步提升ADMET性質(zhì)預(yù)測的準(zhǔn)確度,已有生物科技企業(yè)探索通過深度神經(jīng)網(wǎng)絡(luò)算法有效提取結(jié)構(gòu)特征,加速藥物的早期發(fā)現(xiàn)和篩選過程。其中晶泰科技通過應(yīng)用人工智能高效地動態(tài)配置藥物晶型,能完整預(yù)測一個小分子藥物的所有可能的晶型,大大縮短晶型開發(fā)周期,更有效地挑選出合適的藥物晶型,減少成本。

5.病理生物學(xué)研究

病理生物學(xué)(pathophysiology)是一門研究疾病發(fā)生、發(fā)展、轉(zhuǎn)歸的規(guī)律和機(jī)制的科學(xué)。病理生物學(xué)研究是醫(yī)藥研發(fā)的基礎(chǔ),至今許多疾病尚無治療方法,是由于在病理生物學(xué)研究方面沒有取得進(jìn)展。

肌萎縮側(cè)索硬化(ALS)是一種破壞性的神經(jīng)退行性疾病,發(fā)病機(jī)制至今不明。ALS的一個突出病理特征是,一些RNA結(jié)合蛋白(RNA binding proteins, RBPs)在ALS中發(fā)生突變或異常表達(dá)/分布。人類基因組中至少有1 542種RBPs,目前已發(fā)現(xiàn)17種RBPs與ALS相關(guān),除此以外,其他RBPs是否與ALS相關(guān)呢?

典型案例是IBM公司開發(fā)的Watson系統(tǒng),通過閱讀了2 500萬篇文獻(xiàn)摘要,100萬篇完整論文和400萬專利文獻(xiàn),并基于相關(guān)文獻(xiàn)的大量學(xué)習(xí),建立了模型預(yù)測RBPs與ALS相關(guān)性。有研究者為了測試其模型的預(yù)測能力,首先將IBM Watson的知識庫限制在2013年之前的學(xué)術(shù)出版物上,并要求Watson使用這些可用的信息來預(yù)測與ALS相關(guān)的其他RBPs。在2013—2017年期間,Watson在對4個導(dǎo)致突變的RBPs給出了高度評價,證明了模型的有效性。而后,Watson對基因組中所有的RBPs進(jìn)行篩選,并成功鑒定在ALS中改變的5種新型RBPs。

6.發(fā)掘藥物新適應(yīng)癥

利用深入學(xué)習(xí)技術(shù),將臨床藥物與新的適應(yīng)癥相匹配。這樣可以繞過動物實驗和安全性實驗。

例如,沙利度胺曾用來治療麻風(fēng)病,后來研究人員發(fā)現(xiàn)其對多發(fā)性骨髓瘤具有療效。由于該藥物已經(jīng)積累了大量的安全性與劑量數(shù)據(jù),研究人員能夠繞過第一階段的安全性和劑量試驗。

根據(jù)實驗結(jié)果,F(xiàn)DA在2012年批準(zhǔn)沙利度胺治療多發(fā)性骨髓瘤。據(jù)彭博預(yù)測,這個過程總共花費了4 000~8 000 萬美元。如果從零開始,一個新藥所需的平均費用為20 億美元。

典型代表為Lam Therapeutics、NuMedii、Healx和Insilico Medicine等人工智能公司,他們已經(jīng)在“老藥新用”這個領(lǐng)域進(jìn)行了深度探索。(轉(zhuǎn)化醫(yī)學(xué)網(wǎng)360zhyx.com)

參考資料:

1.https://www./news/lilly-inks-up-to-560m-ai-drug-discovery-collaboration-with-atomwise/

2.新浪醫(yī)藥新聞《禮來與Atomwise合作 利用AI藥物勘探技術(shù)加速藥物篩選》

3.https://mp.weixin.qq.com/s/k9nLY66CYJmB6PUZ4cQakQ

    本站是提供個人知識管理的網(wǎng)絡(luò)存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多