小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

高一數(shù)學(xué)奇偶性訓(xùn)練題

 zd山笑 2019-06-15

 

1.下列命題中,真命題是(  )
A.函數(shù)y=1x是奇函數(shù),且在定義域內(nèi)為減函數(shù)
B.函數(shù)y=x3(x-1)0是奇函數(shù),且在定義域內(nèi)為增函數(shù)
C.函數(shù)y=x2是偶函數(shù),且在(-3,0)上為減函數(shù)
D.函數(shù)y=ax2+c(ac≠0)是偶函數(shù),且在(0,2)上為增函數(shù)
解析:選C.選項(xiàng)A中,y=1x在定義域內(nèi)不具有單調(diào)性;B中,函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱;D中,當(dāng)a<0時(shí),y=ax2+c(ac≠0)在(0,2)上為減函數(shù),故選C.
2.奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù),在區(qū)間[3,6]上的最大值為8,最小值為-1,則2f(-6)+f(-3)的值為(  )
A.10          B.-10
C.-15  D.15
解析:選C.f(x)在[3,6]上為增函數(shù),f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.
3.f(x)=x3+1x的圖象關(guān)于(  )
A.原點(diǎn)對(duì)稱   B.y軸對(duì)稱
C.y=x對(duì)稱   D.y=-x對(duì)稱
解析:選A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)為奇函數(shù),關(guān)于原點(diǎn)對(duì)稱.
4.如果定義在區(qū)間[3-a,5]上的函數(shù)f(x)為奇函數(shù),那么a=________.
解析:∵f(x)是[3-a,5]上的奇函數(shù),
∴區(qū)間[3-a,5]關(guān)于原點(diǎn)對(duì)稱,
∴3-a=-5,a=8.
答案:8

1.函數(shù)f(x)=x的奇偶性為(  )
A.奇函數(shù)         B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)  D.非奇非偶函數(shù)
解析:選D.定義域?yàn)閧x|x≥0},不關(guān)于原點(diǎn)對(duì)稱.
2.下列函數(shù)為偶函數(shù)的是(  )
A.f(x)=|x|+x   B.f(x)=x2+1x
C.f(x)=x2+x   D.f(x)=|x|x2
解析:選D.只有D符合偶函數(shù)定義.
3.設(shè)f(x)是R上的任意函數(shù),則下列敘述正確的是(  )
A.f(x)f(-x)是奇函數(shù)
B.f(x)|f(-x)|是奇函數(shù)
C.f(x)-f(-x)是偶函數(shù)
D.f(x)+f(-x)是偶函數(shù)
解析:選D.設(shè)F(x)=f(x)f(-x)
則F(-x)=F(x)為偶函數(shù).
設(shè)G(x)=f(x)|f(-x)|,
則G(-x)=f(-x)|f(x)|.
∴G(x)與G(-x)關(guān)系不定.
設(shè)M(x)=f(x)-f(-x),
∴M(-x)=f(-x)-f(x)=-M(x)為奇函數(shù).
設(shè)N(x)=f(x)+f(-x),則N(-x)=f(-x)+f(x).
N(x)為偶函數(shù).
4.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx(  )
A.是奇函數(shù)
B.是偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.是非奇非偶函數(shù)
解析:選A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-x·f(-x)=-x·f(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函數(shù);因?yàn)間(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函數(shù).
5.奇函數(shù)y=f(x)(x∈R)的圖象必過(guò)點(diǎn)(  )
A.(a,f(-a))   B.(-a,f(a))
C.(-a,-f(a))   D.(a,f(1a))
解析:選C.∵f(x)是奇函數(shù),
∴f(-a)=-f(a),
即自變量?。璦時(shí),函數(shù)值為-f(a),
故圖象必過(guò)點(diǎn)(-a,-f(a)).
6.f(x)為偶函數(shù),且當(dāng)x≥0時(shí),f(x)≥2,則當(dāng)x≤0時(shí)(  )

A.f(x)≤2   B.f(x)≥2
C.f(x)≤-2   D.f(x)∈R

解析:選B.可畫(huà)f(x)的大致圖象易知當(dāng)x≤0時(shí),有f(x)≥2.故選B.
7.若函數(shù)f(x)=(x+1)(x-a)為偶函數(shù),則a=________.
解析:f(x)=x2+(1-a)x-a為偶函數(shù),
∴1-a=0,a=1.
答案:1
8.下列四個(gè)結(jié)論:①偶函數(shù)的圖象一定與縱軸相交;②奇函數(shù)的圖象一定通過(guò)原點(diǎn);③f(x)=0(x∈R)既是奇函數(shù),又是偶函數(shù);④偶函數(shù)的圖象關(guān)于y軸對(duì)稱.其中正確的命題是________.
解析:偶函數(shù)的圖象關(guān)于y軸對(duì)稱,不一定與y軸相交,①錯(cuò),④對(duì);奇函數(shù)當(dāng)x=0無(wú)意義時(shí),其圖象不過(guò)原點(diǎn),②錯(cuò),③對(duì).
答案:③④
9.①f(x)=x2(x2+2);②f(x)=x|x|;
③f(x)=3x+x;④f(x)=1-x2x.
以上函數(shù)中的奇函數(shù)是________.
解析:(1)∵x∈R,∴-x∈R,
又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),
∴f(x)為偶函數(shù).
(2)∵x∈R,∴-x∈R,
又∵f(-x)=-x|-x|=-x|x|=-f(x),
∴f(x)為奇函數(shù).
(3)∵定義域?yàn)閇0,+∞),不關(guān)于原點(diǎn)對(duì)稱,
∴f(x)為非奇非偶函數(shù).
(4)f(x)的定義域?yàn)閇-1,0)∪(0,1]
即有-1≤x≤1且x≠0,則-1≤-x≤1且-x≠0,
又∵f(-x)=1-?-x?2-x=-1-x2x=-f(x).
∴f(x)為奇函數(shù).
答案:②④
10.判斷下列函數(shù)的奇偶性:
(1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+x  ?x<0?-x2+x ?x>0?.
解:(1)由1+x1-x≥0,得定義域?yàn)閇-1,1),關(guān)于原點(diǎn)不對(duì)稱,∴f(x)為非奇非偶函數(shù).
(2)當(dāng)x<0時(shí),-x>0,則f(-x)=-(-x)2-x=-(-x2+x)=-f(x),
當(dāng)x>0時(shí),-x<0,則f(-x)=(-x)2-x=-(-x2+x)=-f(x),
綜上所述,對(duì)任意的x∈(-∞,0)∪(0,+∞),都有f(-x)=-f(x),
∴f(x)為奇函數(shù).
11.判斷函數(shù)f(x)=1-x2|x+2|-2的奇偶性.
解:由1-x2≥0得-1≤x≤1.
由|x+2|-2≠0得x≠0且x≠-4. 
∴定義域?yàn)閇-1,0)∪(0,1],關(guān)于原點(diǎn)對(duì)稱.
∵x∈[-1,0)∪(0,1]時(shí),x+2>0,
∴f(x)=1-x2|x+2|-2=1-x2x,
∴f(-x)=1-?-x?2-x=-1-x2x=-f(x),
∴f(x)=1-x2|x+2|-2是奇函數(shù).
12.若函數(shù)f(x)的定義域是R,且對(duì)任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.試判斷f(x)的奇偶性.
解:在f(x+y)=f(x)+f(y)中,令x=y(tǒng)=0,
得f(0+0)=f(0)+f(0),
∴f(0)=0.
再令y=-x,則f(x-x)=f(x)+f(-x),
即f(x)+f(-x)=0,
∴f(-x)=-f(x),故f(x)為奇函數(shù).        

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多