來源:磁共振成像傳媒 李俊彤, 苗豐, 王效春. 高分辨MR顱內(nèi)血管壁成像技術(shù)研究及臨床應(yīng)用新進(jìn)展. 磁共振成像, 2018, 9(5): 376-380. 王效春,山西醫(yī)科大學(xué)第一醫(yī)院磁共振影像科副主任,醫(yī)學(xué)博士,博士后,碩士生導(dǎo)師;山西醫(yī)科大學(xué)醫(yī)學(xué)影像學(xué)系影像診斷教研室主任。 研究方向:從事醫(yī)學(xué)影像學(xué)醫(yī)療、科研和教學(xué)工作,主要研究方向?yàn)樯窠?jīng)影像學(xué)、功能磁共振成像及影像組學(xué),在腦血管病、腦退行性變、腦腫瘤等中樞神經(jīng)系統(tǒng)疾病的影像學(xué)診斷、多模態(tài)功能磁共振研究方面有較深的造詣。 獲得獎(jiǎng)勵(lì)或榮譽(yù)稱號(hào):山西省學(xué)術(shù)技術(shù)帶頭人,山西省高等學(xué)校131領(lǐng)軍人才,山西省“千人百縣”高層次人才,山西省百千萬衛(wèi)生人才培養(yǎng)工程非臨床高端領(lǐng)軍人才。在超急性期腦梗死的預(yù)防和綜合評(píng)估方面,提出一站式影像評(píng)估梗死核心和缺血半暗帶,相關(guān)研究發(fā)表在神經(jīng)影像頂尖雜志“美國神經(jīng)放射學(xué)雜志”,并以第一負(fù)責(zé)人獲省級(jí)科技進(jìn)步獎(jiǎng)二等獎(jiǎng);腦功能成像在腦腫瘤術(shù)前評(píng)估中的研究具有重要的臨床及科研價(jià)值,研究成果發(fā)表在磁共振專業(yè)權(quán)威雜志“JMRI”,獲省級(jí)科技進(jìn)步獎(jiǎng)三等獎(jiǎng)。 學(xué)術(shù)任職:中華放射學(xué)會(huì)神經(jīng)學(xué)組委員,中國老年醫(yī)學(xué)會(huì)放射學(xué)分會(huì)委員,中國醫(yī)學(xué)裝備協(xié)會(huì)磁共振應(yīng)用專業(yè)委員會(huì)委員,中國醫(yī)藥質(zhì)量管理協(xié)會(huì)醫(yī)學(xué)影像質(zhì)量研究委員會(huì)委員,山西省放射專業(yè)委員會(huì)副主任委員,山西省女醫(yī)師協(xié)會(huì)影像專業(yè)委員會(huì)副主任委員,《磁共振成像》雜志審稿專家。 隨著人類生活水平的提高及生活方式的改變,腦卒中已成為嚴(yán)重威脅人類健康的致死性疾病之一。在我國,腦卒中是成人致殘或致死的首要危險(xiǎn)因素[1]且發(fā)病年齡呈年輕化趨勢。Wang等[2]研究發(fā)現(xiàn),我國約46.6%的急性缺血性卒中(acute ischemic stroke)由顱內(nèi)動(dòng)脈粥樣硬化疾病(intracranial atherosclerotic disease, ICAD)引起,相關(guān)的腦血管事件每年復(fù)發(fā)率極高。顱內(nèi)動(dòng)脈夾層、Moyamoya病、腦動(dòng)脈炎等也可導(dǎo)致缺血性腦卒中, 因此早期鑒別診斷腦血管病對(duì)臨床指導(dǎo)治療和患者預(yù)后十分重要。 目前臨床主要應(yīng)用管腔狹窄程度來評(píng)估腦血管病變的嚴(yán)重程度。常用的影像學(xué)檢查技術(shù)有CT血管成像(computed tomography angiography, CTA)、數(shù)字減影血管造影(digital subtractionangiography,DSA)和MR血管成像(magnetic resonance angiography,MRA)等,DSA為有創(chuàng)檢查,現(xiàn)已逐步被CTA及MRA取代。上述腦血管檢查技術(shù)只能顯示管腔狹窄程度,不能明確狹窄處管壁結(jié)構(gòu)及導(dǎo)致其狹窄原因[3-4]。Leng等[5]認(rèn)為單純研究管腔狹窄程度對(duì)腦血管病變的診斷,評(píng)估病變特征及預(yù)防繼發(fā)卒中的風(fēng)險(xiǎn)分層明顯不足,而對(duì)病變處動(dòng)脈管壁結(jié)構(gòu)的研究更有意義。 高分辨率MR成像(high resolution magnetic resonanceimaging,HR-MRI)在顱外頸動(dòng)脈斑塊研究和臨床應(yīng)用中日漸成熟,其病理結(jié)果與高分辨率MR成像定義的斑塊成分有很好的相關(guān)性,近年來逐漸被用于顱內(nèi)動(dòng)脈的研究,是目前唯一可在體進(jìn)行腦血管成像的方法[6]。高分辨率MR成像與常規(guī)MRI相比,具有更高的信噪比(signal/noise ratio,SNR)、空間分辨率等優(yōu)勢[7]。 HR-MRI采用3.0 T高場強(qiáng)MR掃描設(shè)備及多通道頭部線圈,顯著提高了圖像空間分辨率、對(duì)比噪聲比(contrast/noise ratio,CNR)、信噪比(signal/noise ratio,SNR),提高了圖像質(zhì)量[8]。高分辨率MR成像在腦血管成像中,較成熟的掃描技術(shù)有“亮血技術(shù)”和“黑血技術(shù)”。 “亮血技術(shù)”即三維時(shí)間飛躍法MR血管成像(3D time of flight magnetic resonanceangiography, 3D-TOF MRA),是一種擾相梯度回波序列,采用短回波時(shí)間(echo time,TE),短重復(fù)時(shí)間(repetitiontime,TR)及較小激發(fā)角度,使斑塊顯示為低信號(hào)、血流為高信號(hào),在顱外頸動(dòng)脈斑塊成像中能夠區(qū)分出管壁、血流及斑塊等不同成分[9],在顯示低信號(hào)的纖維帽和高信號(hào)的斑塊內(nèi)出血(intraplaquehemorrhage,IPH)等方面具有優(yōu)勢。 “黑血技術(shù)”即使用雙反轉(zhuǎn)恢復(fù)、飽和脈沖法等方法來抑制管腔內(nèi)血液信號(hào),使血流呈低信號(hào)、管壁軟組織和斑塊呈較高信號(hào),從而更好地顯示管壁和斑塊等結(jié)構(gòu)。有學(xué)者研究發(fā)現(xiàn),雙反轉(zhuǎn)恢復(fù)法較飽和脈沖法對(duì)血流的抑制效果更好, 該血管壁成像方法臨床應(yīng)用較廣泛, 近年來被國內(nèi)外學(xué)者用于顱內(nèi)動(dòng)脈管壁的成像研究,并獲得了較好的病理印證, 是HR-MRI黑血技術(shù)現(xiàn)階段比較公認(rèn)的標(biāo)準(zhǔn)方法。 Mugler等[10]于1990年首次提出三維磁化準(zhǔn)備快速梯度回波序列(3D magnetization prepared rapid gradient echo,3D MP-RAGE)序列,并將其應(yīng)用于腹部與頭顱的MR成像。3D MP-RAGE序列依賴反轉(zhuǎn)恢復(fù)脈沖能很好地抑制血流信號(hào)和背景組織,較為敏感地識(shí)別出斑塊內(nèi)出血(intraplaque hemorrhage,IPH)信號(hào),與傳統(tǒng)的T1W和TOF序列相比,3DMP-RAGE序列可對(duì)IPH進(jìn)行較準(zhǔn)確的定量測量,其測量結(jié)果與病理結(jié)果具有較高的一致性[11]。Kwak等[12]采用3D MP-RAGE序列對(duì)大腦中動(dòng)脈(middle cerebral artery,MCA)夾層進(jìn)行高分辨率MR管壁成像研究,發(fā)現(xiàn)該序列能很好地顯示假腔內(nèi)出血信號(hào)。 三維同時(shí)非對(duì)比增強(qiáng)血管成像和斑塊內(nèi)出血(3D simultaneous noncontrast angiography and intraplaque hemorrhage,3D SNAP)成像序列充分利用選擇性相位敏感反轉(zhuǎn)恢復(fù)(slab-selectivephase-sensitive inversion-recovery,SPI)技術(shù)的優(yōu)勢(IPH 顯示為高信號(hào),血流顯示為低信號(hào)),只需一次掃描就可區(qū)分出狹窄管腔和IPH;該技術(shù)既能在一次掃描過程中檢測出ICAD管腔狹窄程度及IPH兩個(gè)重要危險(xiǎn)因素,又能靈活地對(duì)這兩個(gè)因素進(jìn)行獨(dú)立分析或聯(lián)合分析[13]。Wang等[14]分別用3D SNAP 序列和3D TOF序列對(duì)大腦中動(dòng)脈(middle cerebral artery,MCA)成像,發(fā)現(xiàn)兩者在顯示動(dòng)脈狹窄病變方面具有較高的一致性,且3D SNAP成像對(duì)大腦中動(dòng)脈最小可見分支的顯示優(yōu)于TOF圖像。 3D快速自旋回波(3D turbo spin echo,3D TSE)序列采用非選擇脈沖和變角度回聚脈沖,使回波間距明顯縮短,掃描效率得到提高[15]。該技術(shù)由不同的MR平臺(tái)優(yōu)化后形成了GE公司的CUBE序列、Siemens公司的SPACE序列和Philips 公司的VISTA序列。Edjlali等[16]在3.0 T下采用變翻轉(zhuǎn)角度3D快速自旋回波T1(CUBE T1)非對(duì)比增強(qiáng)成像對(duì)11例頸動(dòng)脈夾層患者進(jìn)行研究,發(fā)現(xiàn)該序列可準(zhǔn)確識(shí)別動(dòng)脈夾層管壁壁間血腫,彌補(bǔ)了傳統(tǒng)2D軸位成像的不足。2010年Fan等[17]將運(yùn)動(dòng)敏感散相脈沖(flow-sensitive dephasing,F(xiàn)SD)與3D SPACE序列相結(jié)合,提高了管壁與大管腔之間的CNR (P<0.001)及管壁與殘余血流區(qū)域的CNR (P<0.001)。Zhu等[18]認(rèn)為3D VISTA成像可以區(qū)分獲得性動(dòng)脈粥樣硬化性狹窄與椎動(dòng)脈發(fā)育不全(vertebralartery hypoplasia,VAH)。Qiao等[19]對(duì)13例健康志愿者及4例患者行3D VISTA成像研究,并與傳統(tǒng)的2D TSE成像對(duì)比,發(fā)現(xiàn)管壁SNR 提高了約60%,管腔與管壁的CNR提高了約74%。 顱內(nèi)動(dòng)脈粥樣硬化性病變(intracranialatherosclerotic disease,ICAD)是缺血性腦卒中主要風(fēng)險(xiǎn)之一。在中國,缺血性腦卒中患者約33%~50%存在顱內(nèi)動(dòng)脈粥樣硬化[20]。Turan等[21]報(bào)道,3.0 T HR-MRI在體粥樣硬化斑塊成分與癥狀性ICAD患者斑塊的病理標(biāo)本具有較高一致性,可研究在體顱內(nèi)動(dòng)脈粥樣硬化狹窄的病理改變,定性及定量分析斑塊成分大小,探測管壁、管腔結(jié)構(gòu)。HR-MRI可用于測量管壁厚度、管腔面積和管壁面積,分析斑塊負(fù)荷、管壁重構(gòu)及判斷斑塊易損性。Chung等[22]將HR-MRI應(yīng)用于椎動(dòng)脈腦卒中患者的成像研究并獲得其病理結(jié)果,發(fā)現(xiàn)HR-MRI能夠確定其潛在的病理生理機(jī)制, 從而改善癥狀性顱內(nèi)動(dòng)脈疾病的風(fēng)險(xiǎn)分層和治療決策。 煙霧病(Moyamoya disease,MMD)是一種由于單側(cè)或雙側(cè)頸內(nèi)動(dòng)脈終末端、MCA或大腦前動(dòng)脈起始段狹窄或閉塞性腦血管疾病,常伴有異常血管網(wǎng)形成,其發(fā)病率僅次于動(dòng)脈粥樣硬化性MCA閉塞[23-24]。臨床表現(xiàn)與動(dòng)脈粥樣硬化性疾病相近,常難以鑒別,且有時(shí)可并發(fā)。Kim等[25]對(duì)Moyamoya病、顱內(nèi)動(dòng)脈粥樣硬化患者M(jìn)CA管壁進(jìn)行高分辨率掃描,發(fā)現(xiàn)Moyamoya病患者M(jìn)CA 狹窄部位血管外徑較小,少見偏心斑塊,增強(qiáng)掃描局部未見明顯強(qiáng)化。與動(dòng)脈粥樣硬化病變組相應(yīng)病變部位比較,MMD患者同心圓型管壁更加均勻,伴有側(cè)支血管形成,??梢奙CA病理收縮現(xiàn)象,可作為病程進(jìn)展的一個(gè)重要征象[26-27],從而對(duì)MMD病程不同階段進(jìn)行監(jiān)測及治療。 顱內(nèi)動(dòng)脈夾層多發(fā)于椎基底動(dòng)脈,是青年患者缺血性腦卒中及自發(fā)性蛛網(wǎng)膜下腔出血(subarachnoid hemorrhage,SAH)的常見病因,在東亞人群中發(fā)病率達(dá)67%~90%。Jung等[28]采用3.0 T HR-MRI對(duì)自發(fā)性破裂和未破裂的急性顱內(nèi)動(dòng)脈夾層(spontaneous and unruptured acute intracranial artery dissection,SID)患者進(jìn)行定量解剖研究,并對(duì)各腦動(dòng)脈之間的差異進(jìn)行了探討,從而擴(kuò)寬了HR-MRVWI的研究方向。Natori 等[29]對(duì)16例顱內(nèi)椎基底動(dòng)脈夾層(intracranial vertebrobasilarartery dissection,iVBD)患者進(jìn)行前瞻性研究,發(fā)現(xiàn)與多序列MRI相比,T1W (3D-vascular wall imaging) 3D-VWI能直接顯示腦卒中急性期血管壁異常病變,可清楚的顯示夾層內(nèi)膜瓣、雙腔征以及假腔內(nèi)血腫等。Chung等[22]認(rèn)為HR-MRI可以發(fā)現(xiàn)大腦前動(dòng)脈和MCA等顱內(nèi)更加細(xì)小分支血管夾層。 顱內(nèi)動(dòng)脈炎性病變是一種因感染、藥物或變態(tài)反應(yīng)等因素導(dǎo)致腦動(dòng)脈管腔狹窄、閉塞,病變供血區(qū)腦組織缺血、梗死的腦血管疾病,是缺血性腦卒中的發(fā)病原因之一。Saam等[30]報(bào)道,采用脂肪抑制技術(shù)下的HR-MR對(duì)比增強(qiáng)T1WI序列可對(duì)顱內(nèi)動(dòng)脈炎性病變進(jìn)行診斷,該技術(shù)可代替常規(guī)血管造影和腦活檢等有創(chuàng)性檢查;此外,HR-MRI還能提供疾病相關(guān)炎性活動(dòng)信息,可用于監(jiān)測抗炎治療。Siemonsen等[31]經(jīng)活檢證實(shí)HR-MRI能可靠地檢測出巨細(xì)胞性動(dòng)脈炎(giant cell arteritis, GCA),發(fā)現(xiàn)病變顳淺動(dòng)脈和枕動(dòng)脈管壁呈彌漫性同心圓型增厚,病變處管壁光滑,對(duì)比增強(qiáng)明顯強(qiáng)化,該方法檢測GCA的靈敏度和特異性均可達(dá)80%。 有學(xué)者將3D HR-MRI管壁成像應(yīng)用于顱內(nèi)動(dòng)脈瘤、VAH等疾病導(dǎo)致缺血性腦卒中機(jī)制的研究[18,32]。Li等[33]對(duì)放療后患者大腦中動(dòng)脈行HR-MRI檢查,發(fā)現(xiàn)病變管壁呈同心圓增厚,增強(qiáng)掃描均勻強(qiáng)化,其特征與動(dòng)脈炎一致。近年有學(xué)者認(rèn)為MRI管壁成像在鑒別血管炎與可逆性腦血管收縮綜合征(reversiblecerebral vasoconstriction syndrome,RCVS)方面也有重要價(jià)值[34-35]。 高分辨率MR血管壁成像(high resolution magnetic resonancevascular wall imaging,HR-MR VWI)是目前唯一可在體進(jìn)行顱內(nèi)血管壁成像的無創(chuàng)檢查技術(shù),具有高空間分辨率、對(duì)比-噪聲比(contrast/noise ratio,CNR)及信噪比(signal/noise ratio,SNR)等優(yōu)勢;可在體、無創(chuàng)、無輻射地評(píng)估顱內(nèi)血管壁病變情況,為腦血管病變鑒別診斷、對(duì)因治療提供極大幫助和影像依據(jù),具有很大的潛力和臨床應(yīng)用前景,有望成為臨床腦血管病鑒別診斷、預(yù)后評(píng)估及早期預(yù)防的重要檢查手段之一。目前,HR-MR顱內(nèi)血管壁成像仍存在掃描序列及參數(shù)不統(tǒng)一、掃描時(shí)間較長、病人耐受差、受運(yùn)動(dòng)偽影影響較大等問題,需要更多科研團(tuán)隊(duì)積極開展相關(guān)研究,并對(duì)成像參數(shù)及掃描序列做進(jìn)一步改進(jìn)和統(tǒng)一,相信隨著相應(yīng)研究的進(jìn)展,這些問題即將被解決,HR-MRI將成為腦血管病變的一項(xiàng)常規(guī)檢查手段。
[1]Wang Y, Li Z, Zhao X, et al. Stroke care quality in China: substantialimprovement, and a huge challenge and opportunity. Int J Stroke, 2017, 12(3):229-235. [2]Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracraniallarge artery stenoses and occlusions in China: the Chinese IntracranialAtherosclerosis (CICAS) study. Stroke, 2014, 45(3):663-669. [3] XuP, Lv L, Li S, et al. Use of high-resolution 3.0-T magnetic resonance imagingto characterize atherosclerotic plaques in patients with cerebral infarction.Exp Ther Med, 2015, 10(6): 2424-2428. [4]Zhao DL, Deng G, Xie B, et al. High-resolution MRI of the vessel wall inpatients with symptomatic atherosclerotic stenosis of the middle cerebralartery. J Clin Neurosci, 2015, 22(4): 700-704. [5]Leng X, Wong KS, Liebeskind DS. Evaluating intracranial atherosclerosis ratherthan intracranial stenosis. Stroke, 2014, 45(2): 645-651. [6]Zhang DF, Chen YC, Chen H, et al. A high-resolution MRI study of relationshipbetween remodeling patterns and ischemic stroke in patients withatherosclerotic middle cerebral artery stenosis. Front Aging Neurosci, 2017, 9:140. [7]Sui B, Gao P, Lin Y, et al. Distribution and features of middle cerebral arteryatherosclerotic plaques in symptomatic patients: a 3.0 T high-resolution MRIstudy. Neurol Res, 2015, 37(5): 391-396. [8]Bhatti L, Hoang JK, Dale BM, et al. Advanced magnetic resonance techniques: 3T. Radiol Clin North Am, 2015, 53(3): 441-455. [9] LiM, Le WJ, Tao XF, et al. Advantage in bright-blood and black-blood magneticresonance imaging with high-resolution for analysis of carotid atheroscleroticplaques. Chin Med J (Engl), 2015, 128(18): 2478-2484. [10]Mugler JP 3rd, Brookeman JR. Three-dimensional magnetization-prepared rapidgradient-echo imaging (3D MP RAGE). Magn Reson Med, 1990, 15(1): 152-157. [11]Ota H, Yarnykh VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imagingat 3.0-T MR imaging: comparison of the diagnostic performance of threeT1-weighted sequences. Radiology, 2010, 254(2): 551-563. [12]Kwak HS, Hwang SB, Chung GH, et al. High-resolution magnetic resonance imagingof symptomatic middle cerebral artery dissection. J Stroke Cerebrowasc Dis,2014, 23(3): 550-553. [13]Wang J, B?rnert P, Zhao H, et al. Simultaneous noncontrast angiography andintraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic diseaseevaluation. Magn Reson Med, 2013, 69(2): 337-345. [14]Wang J, Guan M, Yamada K, et al. In vivo validation of simultaneousnon-contrast angiography and intraplaque hemorrhage (SNAP) magnetic resonanceangiography: an intracranial artery study. PLoS One, 2016, 11(2): e0149130. [15]Mugler JP 3rd, Bao S, Mulkern RV, et al. Optimized singleslab three-dimensionalspin-echo MR imaging of the brain. Radiology, 2000, 216(3): 891-899. [16]Edjlali M, Roca P, Rabrait C, et al. 3D fast spin-echo T1 black-blood imagingfor the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol, 2013,34(9): E103-E109. [17]Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3Dvariable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD).J Magn Reson Imaging, 2010, 31(3): 645-654. [18]Zhu XJ, Wang W, Du B, et al. Wall imaging for unilateral intracranial vertebralartery hypoplasia with three-dimensional high-isotropic resolution magneticresonance images. Chin Med J (Engl), 2015, 128(12): 1601-1606. [19]Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensionalhigh isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging,2011, 3(1): 22-30. [20]Ojha R, Huang D, An H, et al. Distribution of ischemic infarction and stenosisof intra-and extracranial arteries in young Chinese patients with ischemicstroke. BMC Cardiovasc Disord, 2015, 15: 158. [21]Turan TN, Rumboldt Z, Granholm AC, et al. Intracranialatherosclerosis:correlation between in-vivo 3T high resolution MRI andpathology. Atherosclerosis, 2014, 237(2): 460-463. [22]Chung JW, Kim BJ, Choi BS, et al. High-resolution magnetic resonance imagingreveals hidden etiologies of symptomatic vertebral arterial lesions. J StrokeCerebrovasc Dis, 2014, 23(2): 293-302. [23]Bang OY, Fujimura M, Kim SK, et al. The pathophysiology of moyamoya disease:anupdate. J Stroke, 2016, 18(1): 12-20. [24]Kim JS. Moyamoya disease: epidemiology,clinical features,and diagnosis. JStroke, 2016, 18(1): 2-11. [25]Kim JM, Jung KH, Sohn CH, et al. High-resolution MR technique candistinguish moyamoya disease from atherosclerotic occlusion. Neurology, 2013,80(8): 775-776. [26]Ryoo S, Cha J, Kim SJ, et al. High-resolution magnetic resonance wall imagingfindings of Moyamoya disease. Stroke, 2014, 45(8): 2457-2460. [27]Yuan M, Liu ZQ, Wang ZQ, et al. High-resolution MR imaging of the arterial wallin moyamoya disease. Neurosci Lett, 2015, 584: 77-82. [28]Jung SC, Kim HS, Choi CG, et al. Quantitative analysis using high-resolution 3TMRI in acute intracranial artery dissection. J Neuroimaging. 2016, 26(6):612-617. [29]Natori T, Sasaki M, Miyoshi M, et al. Detection of vessel wall lesions inspontaneous symptomatic vertebrobasilar artery dissection using T1-weighted3-dimensional imaging. J Stroke Cerebrovasc Dis, 2014, 23(9): 2419-2424. [30]Saam T, Habs M, Pollatos O, et al. High-resolution black-bloodcontrast-enhanced T1 weighted images for the diagnosis and follow-up ofintracranial arteritis. Br J Radiol, 2010, 83(993): e182-e184. [31]Siemonsen S, Brekenfeld C, Holst B, et al. 3T MRI reveals extra-andintracranial involvement in giant cell arteritis. AJNR Am J Neuroradiol, 2015,36(1): 91-97. [32]Endo H, Niizuma K, Fujimura M, et al. Ruptured cerebral microaneurysm diagnosedby 3-dimensional fast spin-echo T1 imaging with variable flip angles. J StrokeCerebrovasc Dis, 2015, 24(8): e231-e235. [33]Li M, Wu SW, Xu WH. High-resolution MRI of radiation-induced intracranialvasculopathy. Neurology, 2015, 84(6): 631. [34]Mossa-Basha M, Hwang WD, De HA, et al. Multicontrast high-resolution vesselwall magnetic resonance imaging and its value in differentiating intracranialvasculopathic processes. Stroke, 2015, 46(6): 1567-1573. [35]Obusez EC, Hui F, Hajj-Ali RA, et al. High-resolution MRI vessel wallimaging:spatial and temporal patterns of reversible cerebral vasoconstrictionsyndrome and central nervous system vasculitis. AJNR Am J Neuroradiol, 2014,35(8): 1527-1532. |
|