記得在之前初中數(shù)學有兩本書,一本是代數(shù),一本是幾何,在之后就將兩本書合為一本了。 初中數(shù)學幾何從簡單的線與角入手,再到了相交線和平行線,之后學到了三角形,包括三角形的認識和性質(zhì),全等三角形和相似三角形,全等三角形是初中幾何的基礎和重點內(nèi)容,相似三角形是難點。與三角形相關的還有特殊三角形,如等腰三角形,等邊三角形,直角三角形,銳角三角函數(shù)。還會涉及到四邊形和多邊形,平行四邊形,矩形,菱形和正方形是難點,基本上都轉(zhuǎn)化為三角形來解答。幾何部分還有圓的相關知識點,圓的性質(zhì)與定理。圖形的平移,旋轉(zhuǎn)和軸對稱是圖形的三大變化,綜合性較強,立體幾何涉及內(nèi)容不多,表面展開圖和三視圖有所涉及,但難度都不大。函數(shù)作為初中代數(shù)的難點內(nèi)容,函數(shù)圖像往往結合三角形和四邊形的相關知識點來解答,綜合性較強。 初中幾何的比較難,一方面體現(xiàn)在所涉及的知識點較多,定義,性質(zhì)和判定都需要掌握;另一方面,幾何題目由于其綜合性較強,抽象性較高,就增加了解題的難度。相對代數(shù)部分,對學生的思維能力有更高的要求,是對綜合能力的考察。 幾何題目的難度在試卷中也體現(xiàn)的很明顯,中考數(shù)學試卷的壓軸題往往都是幾何綜合題或探究題。像選擇題中,往往會出現(xiàn)二次函數(shù)的圖像與性質(zhì)的題目,填空題中往往會出現(xiàn)最值問題或圖形三大變化的綜合題目,解答題會出現(xiàn)二次函數(shù)綜合題,圖形與函數(shù)結合,綜合性較強,還有幾何探究題,更是對學生數(shù)學綜合能力的考察,所以在整張數(shù)學試卷中,難度比較大的題目基本都與幾何相關。 那么如何應對呢? 首先要掌握基礎性質(zhì)、定理,基礎知識一定要扎實,對于性質(zhì)定理一定要理解透徹。幾何的學習一定要注意知識點之間的聯(lián)系,要注意去建立知識間的體系,因為很多幾何題目的解答往往用到許多相關的知識點,所以知識體系的構建很關鍵。 幾何的學習離不開圖形,所以幾何題目的解答一定要善于畫圖,通過圖像去分析和解答。幾何題目的解答還有許多常用的幾何模型,掌握了這些模型的特征和用法可以幫助我們在學習中輕松應對一些比較復雜的題目。 幾何綜合題目的解答會用到一些常用的數(shù)學思想和方法,像數(shù)形結合思想,分類討論思想,整體替換思路,方程與代數(shù)思路,嘗試與猜測,等等。要在平時的學習中善于去分析和總結,多加練習。 |
|