小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

對(duì)數(shù)函數(shù)

 bookerboy 2018-04-02

對(duì)數(shù)的定義:一般地,如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對(duì)數(shù),記作x=logaN,讀作以a為底N的對(duì)數(shù),其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù)。一般地,函數(shù)y=logax(a>0,且a≠1)叫做對(duì)數(shù)函數(shù),也就是說以冪為自變量,指數(shù)為因變量,底數(shù)為常量的函數(shù),叫對(duì)數(shù)函數(shù)。其中x是自變量,函數(shù)的定義域是(0,+∞)。它實(shí)際上就是指數(shù)函數(shù)的反函數(shù),可表示為x=ay。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

基本信息

  • 中文名:對(duì)數(shù)函數(shù)

  • 外文名:Logarithmic Function

  • 別稱:對(duì)函數(shù)

  • 表達(dá)式:y=logax(a>0 & a≠1)

  • 提出者:納皮爾

  • 提出時(shí)間:16世紀(jì)末

  • 應(yīng)用學(xué)科:數(shù)學(xué)

  • 適用領(lǐng)域范圍:代數(shù)學(xué),自然科學(xué)

  • 函數(shù)最值:無(wú)

  • 函數(shù)零點(diǎn):x=1

  • 函數(shù)對(duì)稱軸:無(wú)

  • 相關(guān)搜索

  • log的公式大全

  • 對(duì)數(shù)函數(shù)換底公式

  • 指數(shù)函數(shù)

  • 冪函數(shù)

簡(jiǎn)介

對(duì)數(shù)函數(shù)對(duì)數(shù)函數(shù)

函數(shù)y=a^x (a>0,a≠1) 的反函數(shù)y=loga(x) (a>0,a≠1) 叫做對(duì)數(shù)函數(shù).

對(duì)數(shù)函數(shù)的一般形式為 ,它實(shí)際上就是指數(shù)函數(shù) 的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

(3)函數(shù)總是通過(1,0)這點(diǎn)。

(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

(5)顯然對(duì)數(shù)函數(shù)無(wú)界。

歷史

16世紀(jì)末至17世紀(jì)初的時(shí)候,當(dāng)時(shí)在自然科學(xué)領(lǐng)域(特別是天文學(xué))的發(fā)展上經(jīng)常遇到大量精密而又龐大的數(shù)值計(jì)算,於是數(shù)學(xué)家們?yōu)榱藢で蠡?jiǎn)的計(jì)算方法而發(fā)明了對(duì)數(shù)。
德國(guó)的史提非(1487-1567)在1544年所著的《整數(shù)算術(shù)》中,寫出了兩個(gè)數(shù)列,左邊是等比數(shù)列(叫原數(shù)),右邊是一個(gè)等差數(shù)列(叫原數(shù)的代表,或稱指數(shù),德文是Exponent ,有代表之意)。
欲求左邊任兩數(shù)的積(商),只要先求出其代表(指數(shù))的和(差),然后再把這個(gè)和(差)對(duì)向左邊的一個(gè)原數(shù),則此原數(shù)即為所求之積(商),可惜史提非并未作進(jìn)一步探索,沒有引入對(duì)數(shù)的概念。
納皮爾對(duì)數(shù)值計(jì)算頗有研究。他所制造的「納皮爾算籌」,化簡(jiǎn)了乘除法運(yùn)算,其原理就是用加減來(lái)代替乘除法。 他發(fā)明對(duì)數(shù)的動(dòng)機(jī)是為尋求球面三角計(jì)算的簡(jiǎn)便方法,他依據(jù)一種非常獨(dú)等的與質(zhì)點(diǎn)運(yùn)動(dòng)有關(guān)的設(shè)想構(gòu)造出所謂對(duì)數(shù)方 法,其核心思想表現(xiàn)為算術(shù)數(shù)列與幾何數(shù)列之間的聯(lián)系。在他的《奇妙的對(duì)數(shù)表的描述》中闡明了對(duì)數(shù)原理,后人稱為 納皮爾對(duì)數(shù),記為Nap.㏒x,它與自然對(duì)數(shù)的關(guān)系為
Nap.㏒x=107㏑(107/x)
由此可知,納皮爾對(duì)數(shù)既不是自然對(duì)數(shù),也不是常用對(duì)數(shù),與現(xiàn)今的對(duì)數(shù)有一定的距離。
瑞士的彪奇(1552-1632)也獨(dú)立地發(fā)現(xiàn)了對(duì)數(shù),可能比納皮爾較早,但發(fā)表較遲(1620)。
英國(guó)的布里格斯在1624年創(chuàng)造了常用對(duì)數(shù)。
1619年,倫敦斯彼得所著的《新對(duì)數(shù)》使對(duì)數(shù)與自然對(duì)數(shù)更接近(以e=2.71828...為底)。
對(duì)數(shù)的發(fā)明為當(dāng)時(shí)社會(huì)的發(fā)展起了重要的影響,正如科學(xué)家伽利略(1564-1642)說:「給我時(shí)間,空間和對(duì)數(shù),我可以創(chuàng)造出一個(gè)宇宙」。又如十八世紀(jì)數(shù)學(xué)家拉普拉斯(1749-1827)亦提到:「對(duì)數(shù)用縮短計(jì)算的時(shí)間來(lái)使天文學(xué)家的壽命加倍」。
最早傳入我國(guó)的對(duì)數(shù)著作是《比例與對(duì)數(shù)》,它是由波蘭的穆尼斯(1611-1656)和我國(guó)的薛鳳祚在17世紀(jì)中葉合 編而成的。當(dāng)時(shí)在lg2=0.3010中,2叫「真數(shù)」,0.3010叫做「假數(shù)」,真數(shù)與假數(shù)對(duì)列成表,故稱對(duì)數(shù)表。后來(lái)改用 「假數(shù)」為「對(duì)數(shù)」。
我國(guó)清代的數(shù)學(xué)家戴煦(1805-1860)發(fā)展了多種的求對(duì)數(shù)的捷法,著有《對(duì)數(shù)簡(jiǎn)法》(1845)、《續(xù)對(duì)數(shù)簡(jiǎn)法》(1846)等。1854年,英國(guó)的數(shù)學(xué)家艾約瑟(1825-1905) 看到這些著作后,大為嘆服。
當(dāng)今中學(xué)數(shù)學(xué)教科書是先講「指數(shù)」,后以反函數(shù)形式引出「對(duì)數(shù)」的概念。但在歷史上,恰恰相反,對(duì)數(shù)概念不是來(lái)自指數(shù),因?yàn)楫?dāng)時(shí)尚無(wú)分指數(shù)及無(wú)理指數(shù)的明確概念。布里格斯曾向納皮爾提出用冪指數(shù)表示對(duì)數(shù)的建議。1742年 ,J.威廉(1675-1749)在給G.威廉的《對(duì)數(shù)表》所寫的前言中作出指數(shù)可定義對(duì)數(shù)。而歐拉在他的名著《無(wú)窮小 分析尋論》(1748)中明確提出對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的逆函數(shù),和現(xiàn)在教科書中的提法一致。

概念與知識(shí)點(diǎn)

定義

在實(shí)數(shù)域中,真數(shù)式子沒根號(hào)那就只要求真數(shù)式大于零,如果有根號(hào),要求真數(shù)大于零還要保證根號(hào)里的式子大于等于零(若為負(fù)數(shù),則值為虛數(shù)),底數(shù)則要大于0且不為1。
對(duì)數(shù)函數(shù)的底數(shù)為什么要大于0且不為1? 【在一個(gè)普通對(duì)數(shù)式里 a<>
log以a為底a的對(duì)數(shù);如果a=1或=0那么log以a為底a的對(duì)數(shù)就可以等于一切實(shí)數(shù)(比如log11也可以等于2,3,4,5,等等)】
通常我們將以10為底的對(duì)數(shù)叫常用對(duì)數(shù)(common logarithm),并把log10N記為lgN。另外,在科學(xué)技術(shù)中常使用以無(wú)理數(shù)e=2.71828···為底數(shù)的對(duì)數(shù),以e為底的對(duì)數(shù)稱為自然對(duì)數(shù)(natural logarithm),并且把logeN 記為In N。根據(jù)對(duì)數(shù)的定義,可以得到對(duì)數(shù)與指數(shù)間的關(guān)系:
當(dāng)a>0,a≠1時(shí),aX=N→X=logaN。(N>0)
由指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的這個(gè)關(guān)系,可以得到關(guān)于對(duì)數(shù)的如下結(jié)論:

在實(shí)數(shù)范圍內(nèi),負(fù)數(shù)和零沒有對(duì)數(shù)

logaa=1

log以a為底a的對(duì)數(shù)為1(a為常數(shù)) 恒過點(diǎn)(1,0)

性質(zhì)

定義域求解:對(duì)數(shù)函數(shù)y=logax 的定義域是{x 丨x>0},但如果遇到對(duì)數(shù)型復(fù)合函數(shù)的定義域的求解,除了要注意大于0以外,還應(yīng)注意底數(shù)大于0且不等于1,如求函數(shù)y=logx(2x-1)的定義域,需同時(shí)滿足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定義域?yàn)?nbsp;{x 丨x>1/2且x≠1}
值域:實(shí)數(shù)集R,顯然對(duì)數(shù)函數(shù)無(wú)界。
定點(diǎn):函數(shù)圖像恒過定點(diǎn)(1,0)。
單調(diào)性:a>1時(shí),在定義域上為單調(diào)增函數(shù);
0 <><>
奇偶性:非奇非偶函數(shù)
周期性:不是周期函數(shù)
對(duì)稱性:無(wú)
最值:無(wú)
零點(diǎn):x=1
注意:負(fù)數(shù)和0沒有對(duì)數(shù)。
兩句經(jīng)典話:底真同對(duì)數(shù)正,底真異對(duì)數(shù)負(fù)。解釋如下:
也就是說:若y=logab (其中a>0,a≠1,b>0)
當(dāng)<><><><1時(shí),y=logab>0;
當(dāng)a>1, b>1時(shí),y=logab>0;
當(dāng)0<><1,b>1時(shí),y=logab<>
當(dāng)a>1, 0 <><><>
指數(shù)函數(shù)的求導(dǎo):
e的定義:e=lim(x→∞)(1+1/x)x=2.718281828...
設(shè)a>0,
a!=1----(log a(x))'
=lim(Δx→0)((log a(x+Δx)-log a(x))/Δx)
=lim(Δx→0)(1/x*x/Δx*log a((x+Δx)/x))
=lim(Δx→0)(1/x*log a((1+Δx/x)x/Δx))
=1/x*lim(Δx→0)(log a((1+Δx/x)x/Δx))
=1/x*log a(lim(Δx→0)(1+Δx/x)x/Δx)
=1/x*log a(e)
特殊地,當(dāng)a=e時(shí),(log a(x))'=(ln x)'=1/x。
----設(shè)y=ax兩邊取對(duì)數(shù)ln y=xln a兩邊對(duì)求x導(dǎo)y'/y=ln ay'=yln a=a^xln a
特殊地,當(dāng)a=e時(shí),y'=(ax)'=(ex)'=e^ln ex=ex。

運(yùn)算性質(zhì)

一般地,如果a(a>0,且a≠1)的b次冪等于N,那么數(shù)b叫做以a為底N的對(duì)數(shù),記作logaN=b,其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù)。
底數(shù)則要>0且≠1 真數(shù)>0
并且,在比較兩個(gè)函數(shù)值時(shí):
如果底數(shù)一樣,真數(shù)越大,函數(shù)值越大。(a>1時(shí))
如果底數(shù)一樣,真數(shù)越小,函數(shù)值越大。(0<><>
當(dāng)a>0且a≠1時(shí),M>0,N>0,那么:
(1)loga(MN)=logaM+logaN;
(2)loga(M/N)=logaM-logaN;
(3)logaMn=nlogaM(n∈R)
(4)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(5)a(log(b)n)=n(log(b)a) 證明:
設(shè)a=nx則alog(b)n=(nx)log(b)n=n(x*log(b)n)=nlog(b)(n^x)=n(log(b)a)
(6)對(duì)數(shù)恒等式:alog(a)N=N;log(a)ab=b
(7)由冪的對(duì)數(shù)的運(yùn)算性質(zhì)可得(推導(dǎo)公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根號(hào)下的a 為底)(以 n次根號(hào)下的M 為真數(shù))=log(a)M ,
log(以 n次根號(hào)下的a 為底)(以 m次根號(hào)下的M 為真數(shù))=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1

表達(dá)方式

(1)常用對(duì)數(shù):lg(b)=log10b(10為底數(shù))
(2)自然對(duì)數(shù):ln(b)=logeb(e為底數(shù))
e為無(wú)限不循環(huán)小數(shù),通常情況下只取e=2.71828 對(duì)數(shù)函數(shù)的定義

與指數(shù)的關(guān)系

同底的對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)。
當(dāng)a>0且a≠1時(shí),ax=N x=㏒(a)N。
關(guān)于y=x對(duì)稱。
對(duì)數(shù)函數(shù)的一般形式為 y=㏒(a)x,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)(圖象關(guān)于直線y=x對(duì)稱的兩函數(shù)互為反函數(shù)),可表示為x=ay。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定(a>0且a≠1),右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:關(guān)于X軸對(duì)稱、
可以看到,對(duì)數(shù)函數(shù)的圖形只不過是指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶 評(píng)論公約

    類似文章 更多