對(duì)數(shù)的定義:一般地,如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對(duì)數(shù),記作x=logaN,讀作以a為底N的對(duì)數(shù),其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù)。一般地,函數(shù)y=logax(a>0,且a≠1)叫做對(duì)數(shù)函數(shù),也就是說以冪為自變量,指數(shù)為因變量,底數(shù)為常量的函數(shù),叫對(duì)數(shù)函數(shù)。其中x是自變量,函數(shù)的定義域是(0,+∞)。它實(shí)際上就是指數(shù)函數(shù)的反函數(shù),可表示為x=ay。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。 基本信息
簡(jiǎn)介對(duì)數(shù)函數(shù) 函數(shù)y=a^x (a>0,a≠1) 的反函數(shù)y=loga(x) (a>0,a≠1) 叫做對(duì)數(shù)函數(shù). 對(duì)數(shù)函數(shù)的一般形式為 ,它實(shí)際上就是指數(shù)函數(shù) 的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。 右圖給出對(duì)于不同大小a所表示的函數(shù)圖形: 可以看到對(duì)數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。 (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。 (2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。 (3)函數(shù)總是通過(1,0)這點(diǎn)。 (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。 (5)顯然對(duì)數(shù)函數(shù)無(wú)界。 歷史16世紀(jì)末至17世紀(jì)初的時(shí)候,當(dāng)時(shí)在自然科學(xué)領(lǐng)域(特別是天文學(xué))的發(fā)展上經(jīng)常遇到大量精密而又龐大的數(shù)值計(jì)算,於是數(shù)學(xué)家們?yōu)榱藢で蠡?jiǎn)的計(jì)算方法而發(fā)明了對(duì)數(shù)。 概念與知識(shí)點(diǎn)定義 在實(shí)數(shù)域中,真數(shù)式子沒根號(hào)那就只要求真數(shù)式大于零,如果有根號(hào),要求真數(shù)大于零還要保證根號(hào)里的式子大于等于零(若為負(fù)數(shù),則值為虛數(shù)),底數(shù)則要大于0且不為1。 在實(shí)數(shù)范圍內(nèi),負(fù)數(shù)和零沒有對(duì)數(shù) logaa=1 log以a為底a的對(duì)數(shù)為1(a為常數(shù)) 恒過點(diǎn)(1,0) 定義域求解:對(duì)數(shù)函數(shù)y=logax 的定義域是{x 丨x>0},但如果遇到對(duì)數(shù)型復(fù)合函數(shù)的定義域的求解,除了要注意大于0以外,還應(yīng)注意底數(shù)大于0且不等于1,如求函數(shù)y=logx(2x-1)的定義域,需同時(shí)滿足x>0且x≠1 運(yùn)算性質(zhì) 一般地,如果a(a>0,且a≠1)的b次冪等于N,那么數(shù)b叫做以a為底N的對(duì)數(shù),記作logaN=b,其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù)。 (1)常用對(duì)數(shù):lg(b)=log10b(10為底數(shù)) 同底的對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)。 |
|
來(lái)自: bookerboy > 《數(shù)學(xué)》