在解三角形時(shí),正弦定理可解決兩類問題:(1)已知兩角及任一邊,求其它邊或角;(2)已知兩邊及一邊的對(duì)角,求其它邊或角.情況(2)中結(jié)果可能有一解、二解、無解,應(yīng)注意區(qū)分. 余弦定理可解決兩類問題: (1)已知兩邊及夾角或兩邊及一邊對(duì)角的問題;(2)已知三邊問題. 探究提高:(1)已知兩角一邊可求第三角,解這樣的三角形只需直接用正弦定理代入求解即可. (2)已知兩邊和一邊對(duì)角,解三角形時(shí),利用正弦定理求另一邊的對(duì)角時(shí)要注意討論該角,這是解題的難點(diǎn),應(yīng)引起注意. 探究提高:(1)根據(jù)所給等式的結(jié)構(gòu)特點(diǎn)利用余弦定理將角化邊進(jìn)行變形是迅速解答本題的關(guān)鍵. (2)熟練運(yùn)用余弦定理及其推論,同時(shí)還要注意整體思想、方程思想在解題過程中的運(yùn)用. 探究提高:在已知關(guān)系式中,若既含有邊又含有角.通常的思路是:將角都化成邊或?qū)⑦叾蓟山?,再結(jié)合正、余弦定理即可求角. (1)利用正弦、余弦定理判斷三角形形狀時(shí),對(duì)所給的邊角關(guān)系式一般都要先化為純粹的邊之間的關(guān)系或純粹的角之間的關(guān)系,再判斷. (2)本題也可分析式子的結(jié)構(gòu)特征,從式子看具有明顯的對(duì)稱性,可判斷圖形為等腰或直角三角形. |
|