目錄: 1.數(shù)據(jù)結(jié)構(gòu) 2.put插入 3.get查找 4.resize擴容 5.HashMap節(jié)點紅黑樹存儲 ============== 一、hashMap數(shù)據(jù)結(jié)構(gòu)如上圖所示,JDK7之前hashmap又叫散列鏈表:基于一個數(shù)組以及多個鏈表的實現(xiàn),hash值沖突的時候,就將對應(yīng)節(jié)點以鏈表的形式存儲。 JDK8中,當(dāng)同一個hash值(Table上元素)的鏈表節(jié)點數(shù)不小于8時,將不再以單鏈表的形式存儲了,會被調(diào)整成一顆紅黑樹。這就是JDK7與JDK8中HashMap實現(xiàn)的最大區(qū)別。 二、put插入元素源代碼如下:
1 /** 2 * Implements Map.put and related methods 3 * 實現(xiàn)Map的put和相關(guān)操作 4 * @param hash hash for key 計算出來的key的hash值 5 * @param key the key 鍵 6 * @param value the value to put 值 7 * @param onlyIfAbsent if true, don't change existing value 為true則不覆蓋已存在值 8 * @param evict if false, the table is in creation mode. 9 * @return previous value, or null if none 10 */ 11 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, 12 boolean evict) { 13 //tab數(shù)組節(jié)點 p當(dāng)前需要插入的節(jié)點 14 Node<K,V>[] tab; Node<K,V> p; int n, i; 15 //如果當(dāng)前map中無數(shù)據(jù),執(zhí)行resize方法。并且返回n 16 if ((tab = table) == null || (n = tab.length) == 0) 17 n = (tab = resize()).length; 18 //如果要插入的鍵值對在tab上剛好沒有元素,那么把他封裝成Node對象,放在這個位置上結(jié)束。 19 if ((p = tab[i = (n - 1) & hash]) == null) 20 tab[i] = newNode(hash, key, value, null); 21 //有元素,在table的i位置發(fā)生碰撞 22 else { 23 Node<K,V> e; K k; 24 //1.hash值一樣,key一樣,替換 25 if (p.hash == hash && 26 ((k = p.key) == key || (key != null && key.equals(k)))) 27 e = p; 28 //2.如果當(dāng)前節(jié)點是TreeNode類型的數(shù)據(jù),插入紅黑樹 29 else if (p instanceof TreeNode) 30 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); 31 //3.不是TreeNode,遍歷這條鏈子上的節(jié)點,跟jdk7一樣 32 else { 33 for (int binCount = 0; ; ++binCount) { 34 if ((e = p.next) == null) { 35 p.next = newNode(hash, key, value, null); 36 //如果大于等于7,即準備插入第8個,將鏈表轉(zhuǎn)換成紅黑樹(有條件,具體看下圖)。 37 if (binCount >= TREEIFY_THRESHOLD - 1) 38 treeifyBin(tab, hash); 39 break; 40 } 41 if (e.hash == hash && 42 ((k = e.key) == key || (key != null && key.equals(k)))) 43 break; 44 p = e; 45 } 46 } 47 if (e != null) { // existing mapping for key 48 V oldValue = e.value; 49 if (!onlyIfAbsent || oldValue == null) 50 e.value = value; 51 afterNodeAccess(e); 52 return oldValue; 53 } 54 } 55 ++modCount; 56 //判斷閾值,決定是否擴容 57 if (++size > threshold) 58 resize(); 59 afterNodeInsertion(evict); 60 return null; 61 } treeifyBin方法源碼如下: 1 final void treeifyBin(Node<K,V>[] tab, int hash) { 2 int n, index; Node<K,V> e; 3 //當(dāng)tab為null或tab.length<64需要進行擴容 4 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) 5 resize(); 6 else if ((e = tab[index = (n - 1) & hash]) != null) { 7 TreeNode<K,V> hd = null, tl = null; 8 do { 9 TreeNode<K,V> p = replacementTreeNode(e, null); 10 if (tl == null) 11 hd = p; 12 else { 13 p.prev = tl; 14 tl.next = p; 15 } 16 tl = p; 17 } while ((e = e.next) != null); 18 if ((tab[index] = hd) != null) 19 //存儲在紅黑樹 20 hd.treeify(tab); 21 } 22 }
現(xiàn)在我們來看一下為什么需要擴容: 1 /** 2 * The bin count threshold for using a tree rather than list for a 3 * bin. Bins are converted to trees when adding an element to a 4 * bin with at least this many nodes. The value must be greater 5 * than 2 and should be at least 8 to mesh with assumptions in 6 * tree removal about conversion back to plain bins upon 7 * shrinkage. 8 */ 9 static final int TREEIFY_THRESHOLD = 8; 10 11 /** 12 * The smallest table capacity for which bins may be treeified. 13 * (Otherwise the table is resized if too many nodes in a bin.) 14 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts 15 * between resizing and treeification thresholds. 16 */ 17 static final int MIN_TREEIFY_CAPACITY = 64;
MIN_TREEIFY_CAPACITY=64 > 4 * TREEIFY_THRESHOLD=4*8=32 如上圖:轉(zhuǎn)化紅黑樹的table容量最小容量64(JDK8定義的是64),至少是4*TREEIFY_THRESHOLD(單鏈表節(jié)點個數(shù)閥值,用以判斷是否需要樹形化)=32。用以避免 在擴容和樹形結(jié)構(gòu)化的閥值 可能產(chǎn)生的沖突。所以如果小于64必須要擴容。 三、get查找可見外部查找和JDK7差別不大,只是原本是entry[]查詢,JDK8變成Node[]查詢.都是 hash(key)找到table中元素位置,再遍歷找到鏈表(或者是紅黑樹)元素的key。根據(jù)元素類型判斷到底是查詢哪個類型 1 public V get(Object key) { 2 Node<K,V> e; 3 return (e = getNode(hash(key), key)) == null ? null : e.value; 4 } 5 6 /** 7 * Implements Map.get and related methods 8 * 9 * @param hash hash for key 10 * @param key the key 11 * @return the node, or null if none 12 */ 13 final Node<K,V> getNode(int hash, Object key) { 14 Node<K,V>[] tab; Node<K,V> first, e; int n; K k; 15 if ((tab = table) != null && (n = tab.length) > 0 && 16 (first = tab[(n - 1) & hash]) != null) { 17 if (first.hash == hash && // always check first node 18 ((k = first.key) == key || (key != null && key.equals(k)))) 19 return first; 20 if ((e = first.next) != null) { 21 if (first instanceof TreeNode) 22 return ((TreeNode<K,V>)first).getTreeNode(hash, key); 23 do { 24 if (e.hash == hash && 25 ((k = e.key) == key || (key != null && key.equals(k)))) 26 return e; 27 } while ((e = e.next) != null); 28 } 29 } 30 return null; 31 } 四、resize擴容第二部put的時候,有可能需要resize。 因為newCap是oldCap的兩倍所以原節(jié)點的索引值要么和原來一樣,要么就是原(索引+oldCap)和JDK 1.7中實現(xiàn)不同這里不存在rehash 1 /** 2 * Initializes or doubles table size. If null, allocates in 3 * accord with initial capacity target held in field threshold. 4 * Otherwise, because we are using power-of-two expansion, the 5 * elements from each bin must either stay at same index, or move 6 * with a power of two offset in the new table. 7 * 8 * @return the table 9 */ 10 final Node<K,V>[] resize() { 11 Node<K,V>[] oldTab = table; 12 int oldCap = (oldTab == null) ? 0 : oldTab.length; 13 int oldThr = threshold; 14 int newCap, newThr = 0; 15 if (oldCap > 0) { 16 if (oldCap >= MAXIMUM_CAPACITY) { 17 threshold = Integer.MAX_VALUE; 18 return oldTab; 19 } 20 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && 21 oldCap >= DEFAULT_INITIAL_CAPACITY) 22 newThr = oldThr << 1; // double threshold 23 } 24 else if (oldThr > 0) // initial capacity was placed in threshold 25 newCap = oldThr; 26 else { // zero initial threshold signifies using defaults 27 newCap = DEFAULT_INITIAL_CAPACITY; 28 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); 29 } 30 if (newThr == 0) { 31 float ft = (float)newCap * loadFactor; 32 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? 33 (int)ft : Integer.MAX_VALUE); 34 } 35 threshold = newThr; 36 @SuppressWarnings({"rawtypes","unchecked"}) 37 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; 38 table = newTab; 39 if (oldTab != null) { 40 for (int j = 0; j < oldCap; ++j) { 41 Node<K,V> e; 42 if ((e = oldTab[j]) != null) { 43 oldTab[j] = null; 44 if (e.next == null) 45 newTab[e.hash & (newCap - 1)] = e; 46 else if (e instanceof TreeNode) 47 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); 48 else { // preserve order 49 Node<K,V> loHead = null, loTail = null; 50 Node<K,V> hiHead = null, hiTail = null; 51 Node<K,V> next; 52 do { 53 next = e.next; 54 if ((e.hash & oldCap) == 0) { 55 if (loTail == null) 56 loHead = e; 57 else 58 loTail.next = e; 59 loTail = e; 60 } 61 else { 62 if (hiTail == null) 63 hiHead = e; 64 else 65 hiTail.next = e; 66 hiTail = e; 67 } 68 } while ((e = next) != null); 69 if (loTail != null) { 70 loTail.next = null; 71 newTab[j] = loHead; 72 } 73 if (hiTail != null) { 74 hiTail.next = null; 75 //把節(jié)點移動新的位置j+oldCap,這種情況不適用與鏈表的節(jié)點數(shù)大于8的情況 76 //鏈表節(jié)點大于8的情況會轉(zhuǎn)換為紅黑樹存儲 77 newTab[j + oldCap] = hiHead; 78 } 79 } 80 } 81 } 82 } 83 return newTab; 84 } 五.HashMap節(jié)點紅黑樹存儲好了終于到treeify了,大部分內(nèi)容都在注解中 1 final void treeify(Node<K,V>[] tab) { 2 TreeNode<K,V> root = null; 3 for (TreeNode<K,V> x = this, next; x != null; x = next) { 4 next = (TreeNode<K,V>)x.next; 5 x.left = x.right = null; 6 if (root == null) { 7 x.parent = null; 8 x.red = false; 9 root = x; 10 } 11 else { 12 K k = x.key; 13 int h = x.hash; 14 Class<?> kc = null; 15 //遍歷root,把節(jié)點x插入到紅黑樹中,執(zhí)行先插入,然后進行紅黑樹修正 16 for (TreeNode<K,V> p = root;;) { 17 int dir, ph; 18 K pk = p.key; 19 if ((ph = p.hash) > h) 20 dir = -1; 21 else if (ph < h) 22 dir = 1; 23 else if ((kc == null && 24 (kc = comparableClassFor(k)) == null) || 25 (dir = compareComparables(kc, k, pk)) == 0) 26 dir = tieBreakOrder(k, pk);//比較k和pk的值,用于判斷是遍歷左子樹還是右子樹 27 TreeNode<K,V> xp = p; 28 if ((p = (dir <= 0) ? p.left : p.right) == null) { 29 x.parent = xp; 30 if (dir <= 0) 31 xp.left = x; 32 else 33 xp.right = x; 34 //修正紅黑樹 35 root = balanceInsertion(root, x); 36 //退出循環(huán) 37 break; 38 } 39 } 40 } 41 } 42 moveRootToFront(tab, root); 43 } 上面主要做的是紅黑樹的insert,我們知道紅黑樹insert后是需要修復(fù)的,為了保持紅黑樹的平衡,我們來看下紅黑樹平衡的幾條性質(zhì): 當(dāng)insert一個節(jié)點之后為了達到平衡,我們可能需要對節(jié)點進行旋轉(zhuǎn)和顏色翻轉(zhuǎn)(上面的balanceInsertion方法)。 1 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, 2 TreeNode<K,V> x) { 3 //插入的節(jié)點必須是紅色的,除非是根節(jié)點 4 x.red = true; 5 //遍歷到x節(jié)點為黑色,整個過程是一個上濾的過程 6 //xp=x.parent;xpp=xp.parent;xppl=xpp.left;xppr=xpp.right; 7 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { 8 if ((xp = x.parent) == null) { 9 x.red = false; 10 return x; 11 } 12 //如果xp的黑色就直接完成,最簡單的情況 13 else if (!xp.red || (xpp = xp.parent) == null) 14 return root; 15 //如果x的父節(jié)點是x父節(jié)點的左節(jié)點 16 if (xp == (xppl = xpp.left)) { 17 //x的父親節(jié)點的兄弟是紅色的(需要顏色翻轉(zhuǎn)) 18 if ((xppr = xpp.right) != null && xppr.red) { 19 //x父親節(jié)點的兄弟節(jié)點置成黑色 20 xppr.red = false; 21 //父幾點和其兄弟節(jié)點一樣是黑色 22 xp.red = false; 23 //祖父節(jié)點置成紅色 24 xpp.red = true; 25 //然后上濾(就是不斷的重復(fù)上面的操作) 26 x = xpp; 27 } 28 else { 29 //如果x是xp的右節(jié)點整個要進行兩次旋轉(zhuǎn),先左旋轉(zhuǎn)再右旋轉(zhuǎn) 30 if (x == xp.right) { 31 root = rotateLeft(root, x = xp); 32 xpp = (xp = x.parent) == null ? null : xp.parent; 33 } 34 if (xp != null) { 35 xp.red = false; 36 if (xpp != null) { 37 xpp.red = true; 38 root = rotateRight(root, xpp); 39 } 40 } 41 } 42 } 43 //以左節(jié)點鏡像對稱就不做具體分析了 44 else { 45 if (xppl != null && xppl.red) { 46 xppl.red = false; 47 xp.red = false; 48 xpp.red = true; 49 x = xpp; 50 } 51 else { 52 if (x == xp.left) { 53 root = rotateRight(root, x = xp); 54 xpp = (xp = x.parent) == null ? null : xp.parent; 55 } 56 if (xp != null) { 57 xp.red = false; 58 if (xpp != null) { 59 xpp.red = true; 60 root = rotateLeft(root, xpp); 61 } 62 } 63 } 64 } 65 } 66 }
參考:http://www.cnblogs.com/huaizuo/p/5371099.html
|
|