(以人教版為例) 1、函數(shù)(一次函數(shù)、反比例函數(shù)、二次函數(shù))中考占總分的15%左右。 函數(shù)對于學生來說是一個新的知識點,不同于以往的知識,它比較抽象,剛接受起來會有一定的困惑,很多學生學過之后也沒理解函數(shù)到底是什么。特別是二次函數(shù)是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現(xiàn),且知識點多,題型多變。而且一道解答題一般會在試卷最后兩題中出現(xiàn),一般二次函數(shù)的應用和二次函數(shù)的圖像、性質(zhì)及三角形、四邊形綜合題難度較大,有一定難度。如果學生在這一環(huán)節(jié)掌握不好,將會直接影響代數(shù)的基礎,會對中考的分數(shù)會造成很大的影響。 2、整式、分式、二次根式的化簡運算 整式的運算、因式分解、二次根式、科學計數(shù)法及分式化簡等都是初中學習的重點,它貫穿于整個初中數(shù)學的知識,是我們進行數(shù)學運算的基礎,其中因式分解及理解因式分解和整式乘法運算的關(guān)系、分式的運算是難點。中考一般以選擇、填空形式出現(xiàn),但卻是解答題完整解答的基礎。運算能力的熟練程度和答題的正確率有直接的關(guān)系,掌握不好,答題正確率就不會很高,進而后面的的方程、不等式、函數(shù)也無法學好。
3、應用題,中考中占總分的30%左右 包括方程(組)應用,一元一次不等式(組)應用,函數(shù)應用,解三角形應用,概率與統(tǒng)計應用幾種題型。一般會出現(xiàn)兩道解答題(30分左右)及2—3道選擇、填空題(10分—15分),占中考總分的30%左右。現(xiàn)在中考對數(shù)學實際應用的考察會越來越多,數(shù)學與生活聯(lián)系越來越緊密,因為這樣更能讓學生感受學習數(shù)學在自己生活中的運用,以激發(fā)其學習興趣。應用題要求學生的理解辨別能力很強,能從問題中讀出必要的數(shù)學信息,并從數(shù)學的角度尋求解決問題的策略和方法。方程思想、函數(shù)思想、數(shù)形結(jié)合思想也是中學階段一種很重要的數(shù)學思想、是解決很多問題的工具。
4、三角形(全等、相似、角平分線、中垂線、高線、解直角三角形)、四邊形(平行四邊形、矩形、菱形、正方形),中考中占總分25%左右 三角形是初中幾何圖形中內(nèi)容最多的一塊知識,也是學好平面幾何的必要基礎,貫穿初二到到初三的幾何知識,其中的幾何證明題及線段長度和角度的計算對很多學生是難點。因為幾何思維更靈活,定理、定義及輔助線的添加往往都是解決問題的關(guān)鍵,這就要求學生的思維更靈活,能多維度的思考問題,形成自己的解題思路和方法。也只有學好了三角形,后面的四邊形乃至圓的證明就容易理解掌握了,反之,后面的一切幾何證明更將無從下手,沒有清晰的思路。其中解三角形在初三下冊學習,是以直角三角形為基礎的,在中考中會以船的觸礁、樓高、影子問題出現(xiàn)一道大題。因此在初中數(shù)學學習中也是一個重點,而且在以后的高中數(shù)學學習中會將此知識點挖深,拓寬。成為高考的一個重點,因此,初中的同學們應將此知識點熟練掌握。 四邊形在初二進行學習的,其中特殊四邊形的性質(zhì)及判定定理很多,容易混淆,深刻理解這些性質(zhì)和判定、理清它們之間的聯(lián)系是解決證明和計算的基礎,四邊形中題型多變,計算、證明都有一定難度。經(jīng)常在中考選擇題、填空題及解答題的壓軸題(最后一題)中出現(xiàn),對學生綜合運用知識的能力要求較高。
5、圓,中考中占總分的10%左右 包括圓的基本性質(zhì),點、直線與圓位置關(guān)系,圓心角與圓周角,切線的性質(zhì)和判定,扇形弧長及面積,這章節(jié)知識是在初三學習的。其中切線的性質(zhì)和判定、圓中的基本性質(zhì)的理解和運用、直線與圓的位置關(guān)系、圓中的一些線段長度及角度的計算是重點也是難點。 | 政策 | 信息 | 考點 | 試題 | 方法 | 關(guān)注 初中生i學習 |
|