小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

葵花寶典之機器學習:全網(wǎng)最重要的AI資源都在這里了

 樟榆詩詞 2017-08-09


2000年早期,Robbie Allen在寫一本關于網(wǎng)絡和編程的書的時候,深有感觸。他發(fā)現(xiàn),互聯(lián)網(wǎng)很不錯,但是資源并不完善。那時候,博客已經(jīng)開始流行起來。但是,Youtube還不是很普遍,Quora、 Twitter和播客同樣用者甚少。

在他轉(zhuǎn)向人工智能和機器學習10年過后,局面發(fā)生了天翻地覆的變化:網(wǎng)上資源非相當豐富,以至于很多人出現(xiàn)了選擇困難,不知道該從哪里開始(和停止)學習!

為了使大家能夠更加便利地使用這些資源,Robbie Allen瀏覽查看各種各樣的資源,把它們打包整理了出來。AI科技大本營在此借花獻佛,和大家共同分享這些資源。通過它們,你將會對人工智能和機器學習有一個基本的認知。

這些資源內(nèi)容安排如下:知名研究者,研究機構(gòu),視頻課程,YouTube,博客,媒體作家,書籍,Quora主題欄,Reddit,Github庫,播客, 實事通訊媒體、會議、論文。

如果你也有好的資源是這里沒有列出的,歡迎評論區(qū)一起交流!

研究者

大多數(shù)知名的人工智能研究者在網(wǎng)絡上的曝光率還是很高的。下面列舉了20位知名學者,以及他們的個人網(wǎng)站鏈接,維基百科鏈接,推特主頁,Google學術(shù)主頁,Quora主頁。他們中相當一部分人在Reddit或Quora上面參與了問答。

Sebastian Thrun

個人官網(wǎng):

http://robots./

Wikipedia:

https://en./wiki/Sebastian_Thrun

Twitter:

https://twitter.com/SebastianThrun

Google Scholar:

https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao

Quora:

https://www./profile/Sebastian-Thrun

Reddit AMA:

https://www./r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/

Yann LeCun

個人官網(wǎng):

http://yann./

Wikipedia:

https://en./wiki/Sebastian_Thrun

Twitter:

https://twitter.com/ylecun?

Google Scholar:

https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en

Quora:

https://www./profile/Yann-LeCun

Reddit AMA:

http://www./r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

Nando de Freitas

個人官網(wǎng):

http://www.cs./~nando/

Wikipedia:

https://en./wiki/Nando_de_Freitas

Twitter:

https://twitter.com/NandoDF

Google Scholar:

https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en

Reddit AMA:

http://www./r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/

Andrew Ng

個人官網(wǎng):

http://www./

Wikipedia:

https://en./wiki/Andrew_Ng

Twitter:

https://twitter.com/AndrewYNg

Google Scholar:

https://scholar.google.com/citations?use

Quora:

https://www./profile/Andrew-Ng'

Reddit AMA:

http://www./r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

Daphne Koller

個人官網(wǎng):

http://ai./users/koller/

Wikipedia:

https://en./wiki/Daphne_Koller

Twitter:

https://twitter.com/DaphneKoller?lang=en

Google Scholar:

https://scholar.google.com/citations?user=5Iqe53IAAAAJ

Quora:

https://www./profile/Daphne-Koller

Quora Session:

https://www./session/Daphne-Koller/1

Adam Coates

個人官網(wǎng):

http://cs./~acoates/

Twitter:

https://twitter.com/adampaulcoates

Google Scholar:

https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en'

Reddit AMA:

http://www./r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/

Jürgen Schmidhuber

個人官網(wǎng):

http://people./~juergen/

Wikipedia:

https://en./wiki/J%C3%BCrgen_Schmidhuber

Google Scholar:

https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en

Reddit AMA:

http://www./r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/

Geoffrey Hinton

個人官網(wǎng):

Wikipedia:

https://en./wiki/Geoffrey_Hinton

Google Scholar:

http://www.cs./~hinton/

Reddit AMA:

http://www./r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/

Terry Sejnowski

個人官網(wǎng):

http://www./scientist/terrence-sejnowski/

Wikipedia:

https://en./wiki/Terry_Sejnowski

Twitter:

https://twitter.com/sejnowski?lang=en

Google Scholar:

https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en

Reddit AMA:

https://www./r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/

Michael Jordan

個人官網(wǎng):

https://people.eecs./~jordan/

Wikipedia:

https://en./wiki/Michael_I._Jordan

Google Scholar:

https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en'

Reddit AMA:

http://www./r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/

Peter Norvig

個人官網(wǎng):

http:///

Wikipedia:

https://en./wiki/Peter_Norvig

Google Scholar:

https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en

Reddit AMA:

https://www./r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/

Yoshua Bengio

個人官網(wǎng):

http://www.iro./~bengioy/yoshua_en/

Wikipedia:

https://en./wiki/Yoshua_Bengio

Google Scholar:

https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en

Quora:

https://www./profile/Yoshua-Bengio

Reddit AMA:

http://www./r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/

Ina Goodfellow

個人官網(wǎng):

http://www./

Wikipedia:

https://en./wiki/Ian_Goodfellow

Twitter:

https://twitter.com/goodfellow_ian

Google Scholar:

https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en

Quora:

https://www./profile/Ian-Goodfellow

Quora Session:

https://www./session/Ian-Goodfellow/1

Andrej Karpathy

個人官網(wǎng):

http://karpathy./

Twitter:

https://twitter.com/karpathy

Google Scholar:

https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en

Quora:

https://www./profile/Andrej-Karpathy

Quora Session:

https://www./session/Andrej-Karpathy/1

Richard Socher

個人官網(wǎng):

http://www./

Twitter:

https://twitter.com/RichardSocher

Google Scholar:

https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en

Interview:

http://www./2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html

Demis Hassabis

個人官網(wǎng):

http:///

Wikipedia:

https://en./wiki/Demis_Hassabis

Twitter:

https://twitter.com/demishassabis

Google Scholar:

https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en

Interview:

https://www./features/2016-demis-hassabis-interview-issue/

Christopher Manning

個人官網(wǎng):

https://nlp./~manning/

Twitter:

https://twitter.com/chrmanning

Google Scholar:

https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en'

Fei-Fei Li

個人官網(wǎng):

http://vision./people.html

Wikipedia:

https://en./wiki/Fei-Fei_Li

Twitter:

https://twitter.com/drfeifei

Google Scholar:

https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en'

Ted Talk:

https://www./talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/transcript?language=en

Fran?ois Chollet

個人官網(wǎng):

https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

Twitter:

https://twitter.com/fchollet

Google Scholar:

https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

Quora:

https://www./profile/Fran%C3%A7ois-Chollet

Quora Session:

https://www./session/Fran%C3%A7ois-Chollet/1

Dan Jurafsky

個人官網(wǎng):

https://web./~jurafsky/

Wikipedia:

https://en./wiki/Daniel_Jurafsky

Twitter:

https://twitter.com/jurafsky

Google Scholar:

https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en

Oren Etzioni

個人官網(wǎng):

http:///team/orene/

Wikipedia:

https://en./wiki/Oren_Etzioni

Twitter:

https://twitter.com/etzioni

Google Scholar:

https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en

Quora:

https://scholar.google.com/citations?user

Reddit AMA:

https://www./r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/

機構(gòu)

網(wǎng)絡上有大量的知名機構(gòu)致力于推進人工智能領域的研究和發(fā)展。

以下列出的是同時擁有官方網(wǎng)站/博客和推特賬號的機構(gòu)。

OpenAI

官網(wǎng):https:///

Twitter:https://twitter.com/OpenAI

DeepMind

官網(wǎng):https:///

Twitter:https://twitter.com/DeepMindA

Google Research

官網(wǎng):https://research./

Twitter:https://twitter.com/googleresearch

AWS AI

官網(wǎng):https://aws.amazon.com/blogs/ai/

Twitter:https://twitter.com/awscloud

Facebook AI Research

官網(wǎng):https://research./category/facebook-ai-research-fair/

Microsoft Research

官網(wǎng):https://www.microsoft.com/en-us/research/

Twitter:https://twitter.com/MSFTResearch

Baidu Research

官網(wǎng):http://research.baidu.com/

Twitter:https://twitter.com/baiduresearch?lang=en

IntelAI

官網(wǎng):https://software.intel.com/en-us/ai

Twitter:https://twitter.com/IntelAI

AI2

官網(wǎng):http:///

Twitter:https://twitter.com/allenai_org

Partnership on AI

官網(wǎng):https://www./

Twitter:https://twitter.com/partnershipai

視頻課程

以下列出的是一些免費的視頻課程和教程。

Coursera?—?Machine Learning (Andrew Ng):

https://www./learn/machine-learning#syllabus

Coursera?—?Neural Networks for Machine Learning (Geoffrey Hinton):

https://www./learn/neural-networks

Udacity?—?Intro to Machine Learning (Sebastian Thrun):

https://classroom./courses/ud120

Udacity?—?Machine Learning (Georgia Tech):

https://www./course/machine-learning--ud262

Udacity?—?Deep Learning (Vincent Vanhoucke):

https://www./course/deep-learning--ud730

Machine Learning (mathematicalmonk):

https://www./playlist?list=PLD0F06AA0D2E8FFBA

Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas):

http://course./start.html

Stanford CS231n?—?Convolutional Neural Networks for Visual Recognition (Winter 2016) :

https://www./watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

(class link):http://cs231n./

Stanford CS224n?—?Natural Language Processing with Deep Learning (Winter 2017) :

https://www./playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

(class link):http://web./class/cs224n/

Oxford Deep NLP 2017 (Phil Blunsom et al.):

https://github.com/oxford-cs-deepnlp-2017/lectures

Reinforcement Learning (David Silver):

http://www0.cs./staff/d.silver/web/Teaching.html

Practical Machine Learning Tutorial with Python (sentdex):

https://www./watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

YouTube

以下,我列舉了一些YoutTube頻道和用戶,它們的主要內(nèi)容是人工智能或者機器學習。這里按照受歡迎程度列舉如下:

sentdex (225K subscribers, 21M views):

https://www./user/sentdex

Artificial Intelligence A.I. (7M views):

https://www./channel/UC-XbFeFFzNbAUENC8Ofpn3g

Siraj Raval (140K subscribers, 5M views):

https://www./channel/UCWN3xxRkmTPmbKwht9FuE5A

Two Minute Papers (60K subscribers, 3.3M views):

https://www./user/keeroyz

DeepLearning.TV (42K subscribers, 1.7M views):

https://www./channel/UC9OeZkIwhzfv-_Cb7fCikLQ

Data School (37K subscribers, 1.8M views):

https://www./user/dataschool

Machine Learning Recipes with Josh Gordon (324K views):

https://www./playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal

Artificial Intelligence?—?Topic (10K subscribers):

https://www./channel/UC9pXDvrYYsHuDkauM2fLllQ

Allen Institute for Artificial Intelligence (AI2) (1.6K subscribers, 69K views):

https://www./channel/UCEqgmyWChwvt6MFGGlmUQCQ

Machine Learning at Berkeley (634 subscribers, 48K views):

https://www./channel/UCXweTmAk9K-Uo9R6SmfGtjg

Understanding Machine Learning?—?Shai Ben-David (973 subscribers, 43K views):

https://www./channel/UCR4_akQ1HYMUcDszPQ6jh8Q

Machine Learning TV (455 subscribers, 11K views):

https://www./channel/UChIaUcs3tho6XhyU6K6KMrw

博客

Andrej Karpathy

博客:http://karpathy./

Twitter:https://twitter.com/karpathy

i am trask

博客:http://iamtrask./

Twitter:https://twitter.com/iamtrask

Christopher Olah

博客:http://colah./

Twitter:https://twitter.com/ch402

Top Bots

博客:http://www./

Twitter:https://twitter.com/topbots

WildML

博客:http://www./

Twitter:https://twitter.com/dennybritz

Distill

博客:http:///

Twitter:https://twitter.com/distillpub

Machine Learning Mastery

博客:http:///blog/

Twitter:https://twitter.com/TeachTheMachine

FastML

博客:http:///

Twitter:https://twitter.com/fastml_extra

Adventures in NI

博客:https://joanna-bryson./

Twitter:https://twitter.com/j2bryson

Sebastian Ruder

博客:http:///

Twitter:https://twitter.com/seb_ruder

Unsupervised Methods

博客:http:///

Twitter:https://twitter.com/RobbieAllen

Explosion

博客:https:///blog/

Twitter:https://twitter.com/explosion_ai

Tim Dettwers

博客:http:///

Twitter:https://twitter.com/Tim_Dettmers

When trees fall...

博客:http://blog./

Twitter:https://twitter.com/tanshawn

ML@B

博客:https://ml./blog/

Twitter:https://twitter.com/berkeleyml

媒體作家

以下是一些人工智能領域方向頂尖的媒體作家。

Robbie Allen:

https:///@robbieallen

Erik P.M. Vermeulen:

https:///@erikpmvermeulen

Frank Chen:

https:///@withfries2

azeem:

https:///@azeem

Sam DeBrule:

https:///@samdebrule

Derrick Harris:

https:///@derrickharris

Yitaek Hwang:

https:///@yitaek

samim:

https:///@samim

Paul Boutin:

https:///@Paul_Boutin

Mariya Yao:

https:///@thinkmariya

Rob May:

https:///@robmay

Avinash Hindupur:

https:///@hindupuravinash

書籍

以下列出的是關于機器學習、深度學習和自然語言處理的書。這些書都是免費的,可以通過網(wǎng)絡獲取或者下載。

機器學習

Understanding Machine Learning From Theory to Algorithms:

http://www.cs./~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

Machine Learning Yearning:

http://www./

A Course in Machine Learning:

http:///

Machine Learning:

https://www./books/machine_learning

Neural Networks and Deep Learning:

http:///

Deep Learning Book:

http://www./

Reinforcement Learning: An Introduction:

http:///sutton/book/the-book-2nd.html

Reinforcement Learning:

https://www./books/reinforcement_learning

自然語言處理

Speech and Language Processing (3rd ed. draft):

https://web./~jurafsky/slp3/

Natural Language Processing with Python:

http://www./book/

An Introduction to Information Retrieval:

https://nlp./IR-book/html/htmledition/irbook.html

數(shù)學

Introduction to Statistical Thought:

http://people.math./~lavine/Book/book.pdf

Introduction to Bayesian Statistics:

https://www.stat./~brewer/stats331.pdf

Introduction to Probability:

https://www./~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

Think Stats: Probability and Statistics for Python programmers:

http:///wp/think-stats-2e/

The Probability and Statistics Cookbook:

http:///

Linear Algebra:

http://joshua./linearalgebra/book.pdf

Linear Algebra Done Wrong:

http://www.math./~treil/papers/LADW/book.pdf

Linear Algebra, Theory And Applications:

https://math./~klkuttle/Linearalgebra.pdf

Mathematics for Computer Science:

https://courses.csail./6.042/spring17/mcs.pdf

Calculus:

https://ocw./ans7870/resources/Strang/Edited/Calculus/Calculus.pdf

Calculus I for Computer Science and Statistics Students:

http://www.math./~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

Quora

Quora對于人工智能和機器學習來說是一個非常好的資源。許多業(yè)界最頂尖的研究者會對Quora上某些問題進行回答。以下,我列舉了主要的人工智能相關的主題,你可以訂閱如果你想跟進這些內(nèi)容。

Computer-Science (5.6M followers):

https://www./topic/Computer-Science

Machine-Learning (1.1M followers):

https://www./topic/Machine-Learning

Artificial-Intelligence (635K followers):

https://www./topic/Artificial-Intelligence

Deep-Learning (167K followers):

https://www./topic/Deep-Learning

Natural-Language-Processing (155K followers):

https://www./topic/Natural-Language-Processing

Classification-machine-learning (119K followers):

https://www./topic/Classification-machine-learning

Artificial-General-Intelligence (82K followers)

https://www./topic/Artificial-General-Intelligence

Convolutional-Neural-Networks-CNNs (25K followers):

https://www./topic/Artificial-General-Intelligence

Computational-Linguistics (23K followers):

https://www./topic/Computational-Linguistics

Recurrent-Neural-Networks (17.4K followers):

https://www./topic/Recurrent-Neural-Networks

Reddit

Reddit上的人工智能社區(qū)并沒有Quora上的那么大,但是,Reddit上面依然有一些值得關注的資源。Reddit有助于跟進最新的業(yè)界動態(tài)和研究進展,而Quora便于進行問答交流。以下通過關注量列舉了主要的人工智能領域的subreddits。

/r/MachineLearning (111K readers):

https://www./r/MachineLearning

/r/robotics/ (43K readers):

https://www./r/robotics/

/r/artificial (35K readers):

https://www./r/artificial

/r/datascience (34K readers):

https://www./r/datascience

/r/learnmachinelearning (11K readers):

https://www./r/learnmachinelearning

/r/computervision (11K readers):

https://www./r/computervision

/r/MLQuestions (8K readers):

https://www./r/MLQuestions

/r/LanguageTechnology (7K readers):

https://www./r/LanguageTechnology

/r/mlclass (4K readers):

https://www./r/mlclass

/r/mlpapers (4K readers):

https://www./r/mlpapers

Github

人工智能領域最令人激動的原因之一是大多數(shù)項目都是開源的,而且可以通過Github獲得。如果你需要一些Python或Jupyter Notebooks實現(xiàn)的示例算法,在Github上有大量的這類教育資源。

Machine Learning (6K repos):

https://github.com/search?o=desc&q=topic%3Amachine-learning &s=stars&type=Repositories&utf8=%E2%9C%93

Deep Learning (3K repos):

https://github.com/search?q=topic%3Adeep-learning&type=Repositories

Tensorflow (2K repos):

https://github.com/search?q=topic%3Atensorflow&type=Repositories

Neural Network (1K repos):

https://github.com/search?q=topic%3Atensorflow&type=Repositories

NLP (1K repos):

https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories

播客

對人工智能進行報道的播客數(shù)量在不斷地增加,一部分關注最新的動態(tài),一部分關注人工智能教育。

ConcerningAI

官網(wǎng):

https:///

iTunes:

https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211

This Week in Machine Learning and AI

官網(wǎng):

https:///

iTunes:

https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2

The AI Podcast

官網(wǎng):

https://blogs./ai-podcast/

iTunes:

https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811

Data Skeptic

官網(wǎng):

http:///

iTunes:

https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705

Linear Digressions

官網(wǎng):

https://itunes.apple.com/us/podcast/linear-digressions/id941219323

iTunes:

https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2

Partially Dervative

官網(wǎng):

http:///

iTunes:

https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2

O'Reilly Data Show

官網(wǎng):

http://radar./tag/oreilly-data-show-podcast

iTunes:

https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220

Learning Machines 101

官網(wǎng):

http://www./

iTunes:

https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2

The Talking Machines

官網(wǎng):

http://www./

iTunes:

https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2

Artificial Intelligence in Industry

官網(wǎng):

http:///

iTunes:

https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2

Machine Learning Guide

官網(wǎng)

http:///podcasts/machine-learning

https://itunes.apple...iTunes:

https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2

時事通訊媒體

如果你想了解最新的業(yè)界消息和學術(shù)進展,這里有大量的時事通訊媒體供你選擇。

The Exponential View:

https://www./profile/azeem

AI Weekly:

http:///

Deep Hunt:

https:///

O’Reilly Artificial Intelligence Newsletter:

http://www./ai/newsletter.html

Machine Learning Weekly:

http:///

Data Science Weekly Newsletter:

https://www./

Machine Learnings:

http://subscribe./

Artificial Intelligence News:

http:///

When trees fall…:

https:///p/GVBR82UWhWb9

WildML:

https:///p/PoZVx95N9RGV

Inside AI:

https:///technically-sentient

Kurzweil AI:

http://www./create-account

Import AI:

https:///import-ai/

The Wild Week in AI:

https://www./profile/wildml

Deep Learning Weekly:

http://www./

Data Science Weekly:

https://www./

KDnuggets Newsletter:

http://www./news/subscribe.html?qst

會議

隨著人工智能的崛起,與人工智能相關的會議也在逐漸增加。這里列舉一些主要的會議。

學術(shù)會議

NIPS (Neural Information Processing Systems):

https:///

ICML (International Conference on Machine Learning):

https://2017.

KDD (Knowledge Discovery and Data Mining):

http://www./

ICLR (International Conference on Learning Representations):

http://www./

ACL (Association for Computational Linguistics):

http:///

EMNLP (Empirical Methods in Natural Language Processing):

http:///

CVPR (Computer Vision and PatternRecognition):

http://cvpr2017./

ICCF(InternationalConferenceonComputerVision):

http://iccv2017./

專業(yè)會議

O’Reilly Artificial Intelligence Conference:

https://conferences./artificial-intelligence/

Machine Learning Conference (MLConf):

http:///

AI Expo (North America, Europe, World):

https://www./

AI Summit:

https:///

AI Conference:

https://aiconference./helloworld/

論文

arXiv.org上特定領域論文集:

Artificial Intelligence:

https:///list/cs.AI/recent

Learning (Computer Science):

https:///list/cs.LG/recent

Machine Learning (Stats):

https:///list/stat.ML/recent

NLP:

https:///list/cs.CL/recent

Computer Vision:

https:///list/cs.CV/recent

Semantic Scholar搜索結(jié)果:

Neural Networks (179K results):

https://www./search?q=%22neural%20networks%22&sort=relevance&ae=false

Machine Learning (94K results):

https://www./search?q=%22machine%20learning%22&sort=relevance&ae=false

Natural Language (62K results):

https://www./search?q=%22natural%20language%22&sort=relevance&ae=false

Computer Vision (55K results):

https://www./search?q=%22natural%20language%22&sort=relevance&ae=false

Deep Learning (24K results):

https://www./search?q=%22deep%20learning%22&sort=relevance&ae=false

此外,一個很好的資源是Andrej Karpathy維護的一個用于搜索論文的項目。

http://www./

作者:Robbie Allen

原文:https:///my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524

    本站是提供個人知識管理的網(wǎng)絡存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多