Science特刊:人體能不能完美修復(fù)與再生?
1 天前
來(lái)源:生物探索
6月9日的Science推出了關(guān)于修復(fù)與再生(Repair and Regeneration)的??S懻撔迯?fù)與再生是希望能解決年齡帶來(lái)的皺紋和脆弱的膝蓋;以及疾病或損傷導(dǎo)致失明,傷口不愈合,心臟功能喪失等等問(wèn)題。與蠑螈和渦蟲相比,人類與生俱來(lái)的再生能力是有限度的。我們會(huì)留下疤痕、活動(dòng)性變差、功能減弱。這期特刊介紹了目前活躍的研究領(lǐng)域,以了解修復(fù)和再生的機(jī)制,著眼于治療的應(yīng)用。 活躍的干細(xì)胞群使腸道更新的工作相對(duì)迅速。然而,其他組織和器官,如哺乳動(dòng)物的心臟和中樞神經(jīng)系統(tǒng),并沒(méi)有那么容易重建。重組干細(xì)胞的方法現(xiàn)在是豐富的,但我們還需要方法來(lái)刺激細(xì)胞的再生能力,提高細(xì)胞的存活。調(diào)節(jié)免疫系統(tǒng)既可以幫助和阻礙修復(fù)與再生。當(dāng)再生是有限的,組織移植和生物修復(fù)可以提供替代路線。新興的概念和方法的進(jìn)步,使我們更接近重建人體或甚至提高身體機(jī)能的目標(biāo)。 本期特刊包含了四篇綜述,探索君將簡(jiǎn)要地為您介紹一下綜述的內(nèi)容: 自我修復(fù)的細(xì)胞 Self-repairing cells: How single cells heal membrane ruptures and restore lost structures 許多生物和組織表現(xiàn)出正常生理或者病理機(jī)制中愈合和再生所需的能力。然而,這些修復(fù)活動(dòng)也可以在單細(xì)胞水平觀察到。其中人們對(duì)可以治愈膜破裂和重建受損或缺失的細(xì)胞結(jié)構(gòu)的物理和分子機(jī)制,仍然知之甚少。本文綜述了目前用來(lái)了解傷口愈合和再生研究的一些模式生物,包括非洲爪蟾卵母細(xì)胞、衣藻、喇叭蟲。雖然許多懸而未決的問(wèn)題仍然存在,闡明細(xì)胞如何修復(fù)自己是重要的。理解細(xì)胞生物學(xué)方面的機(jī)制,也有潛力將其用于治療人類疾病。 自我修復(fù)的細(xì)胞 炎癥與代謝 Inflammation and metabolism in tissue repair and regeneration 創(chuàng)傷后組織修復(fù)是一個(gè)復(fù)雜的、代謝要求較高的過(guò)程。根據(jù)組織的再生能力和炎癥反應(yīng)的狀況,結(jié)果通常是不完美的,有一定程度的纖維化,這是由膠原結(jié)締組織異常積累決定的。炎性細(xì)胞在傷口部位有多種作用,促進(jìn)傷口清創(chuàng)和產(chǎn)生趨化因子、代謝產(chǎn)物和生長(zhǎng)因子。如果這個(gè)精心策劃的響應(yīng)變得失調(diào),傷口可以成為慢性或逐漸纖維化,影響組織功能,最終導(dǎo)致器官衰竭和死亡。在這篇綜述中,作者回顧了目前對(duì)炎癥和細(xì)胞代謝在組織再生反應(yīng)中的作用的認(rèn)識(shí),突出了有可能擴(kuò)大治療前景的新概念,并簡(jiǎn)要討論了重要的知識(shí)差距。 傷口中巨噬細(xì)胞的代謝途徑 視覺(jué)通路的再生 Regenerating optic pathways from the eye to the brain 人類是高度依賴視覺(jué)的。視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(RGC)是連接眼睛大腦神的經(jīng)元,損傷后不能再生,最終導(dǎo)致失明。這篇綜述中,作者回顧了視覺(jué)系統(tǒng)的再生和修復(fù)研究。內(nèi)在生長(zhǎng)發(fā)育的程序可以在RGCs重新激活,神經(jīng)活動(dòng)能促進(jìn)RGC再生。即使在成人的大腦,連接眼睛和大腦的功能的再次形成是可能的。移植和基因治療可能取代或恢復(fù)死亡或受傷的視網(wǎng)膜神經(jīng)元。視網(wǎng)膜修復(fù)可以在動(dòng)物模型中恢復(fù)視力,在臨床上也有實(shí)用價(jià)值。在不久的將來(lái),失明的人類患者中可能會(huì)出現(xiàn)某些形式的視力功能恢復(fù)。 移植RGC來(lái)恢復(fù)視力 心臟再生策略 Cardiac regeneration strategies: Staying young at heart 雖然受損的骨骼肌具有很強(qiáng)的再生能力,但至少在哺乳動(dòng)物中,心肌的再生能力較差。這種缺陷是由于缺乏心肌干細(xì)胞,再加上限制成人心肌細(xì)胞進(jìn)入細(xì)胞周期和完成分裂的障礙。最近對(duì)動(dòng)物的研究有了新的見(jiàn)解:先天的再生能力增強(qiáng),干細(xì)胞和重新編程技術(shù)的革新,以及對(duì)心肌細(xì)胞遺傳程序和關(guān)鍵外在信號(hào)更清楚的了解。現(xiàn)在有促進(jìn)心臟再生的方法有可能抵消心血管疾病的高發(fā)病率和死亡率。 通過(guò)心臟細(xì)胞增殖來(lái)再生的途徑 參考資料 Special Issue:Repair and Regeneration 參考文獻(xiàn)
我要補(bǔ)充文獻(xiàn)
Self-repairing cells: How single cells heal membrane ruptures and restore lost structures
文獻(xiàn)檢索:DOI: 10.1126/science.aam6496
文獻(xiàn)期刊:Science
Many organisms and tissues display the ability to heal and regenerate as needed for normal physiology and as a result of pathogenesis. However, these repair activities can also be observed at the single-cell level. The physical and molecular mechanisms by which a cell can heal membrane ruptures and rebuild damaged or missing cellular structures remain poorly understood. This Review presents current understanding in wound healing and regeneration as two distinct aspects of cellular self-repair by examining a few model organisms that have displayed robust repair capacity, including Xenopus oocytes, Chlamydomonas, and Stentor coeruleus. Although many open questions remain, elucidating how cells repair themselves is important for our mechanistic understanding of cell biology. It also holds the potential for new applications and therapeutic approaches for treating human disease. 展開(kāi)Inflammation and metabolism in tissue repair and regeneration
文獻(xiàn)檢索:DOI: 10.1126/science.aam7928
文獻(xiàn)期刊:Science
Tissue repair after injury is a complex, metabolically demanding process. Depending on the tissue’s regenerative capacity and the quality of the inflammatory response, the outcome is generally imperfect, with some degree of fibrosis, which is defined by aberrant accumulation of collagenous connective tissue. Inflammatory cells multitask at the wound site by facilitating wound debridement and producing chemokines, metabolites, and growth factors. If this well-orchestrated response becomes dysregulated, the wound can become chronic or progressively fibrotic, with both outcomes impairing tissue function, which can ultimately lead to organ failure and death. Here we review the current understanding of the role of inflammation and cell metabolism in tissue-regenerative responses, highlight emerging concepts that may expand therapeutic perspectives, and briefly discuss where important knowledge gaps remain. 展開(kāi)Regenerating optic pathways from the eye to the brain
文獻(xiàn)檢索:DOI: 10.1126/science.aal5060
文獻(xiàn)期刊:Science
Humans are highly visual. Retinal ganglion cells (RGCs), the neurons that connect the eyes to the brain, fail to regenerate after damage, eventually leading to blindness. Here, we review research on regeneration and repair of the optic system. Intrinsic developmental growth programs can be reactivated in RGCs, neural activity can enhance RGC regeneration, and functional reformation of eye-to-brain connections is possible, even in the adult brain. Transplantation and gene therapy may serve to replace or resurrect dead or injured retinal neurons. Retinal prosthetics that can restore vision in animal models may too have practical power in the clinical setting. Functional restoration of sight in certain forms of blindness is likely to occur in human patients in the near future. 展開(kāi)Cardiac regeneration strategies: Staying young at heart
文獻(xiàn)檢索:DOI: 10.1126/science.aam5894
文獻(xiàn)期刊:Science
The human heart is continually operating as a muscular pump, contracting, on average, 80 times per minute to propel 8000 liters of blood through body tissues each day. Whereas damaged skeletal muscle has a profound capacity to regenerate, heart muscle, at least in mammals, has poor regenerative potential. This deficiency is attributable to the lack of resident cardiac stem cells, combined with roadblocks that limit adult cardiomyocytes from entering the cell cycle and completing division. Insights for regeneration have recently emerged from studies of animals with an elevated innate capacity for regeneration, the innovation of stem cell and reprogramming technologies, and a clearer understanding of the cardiomyocyte genetic program and key extrinsic signals. Methods to augment heart regeneration now have potential to counteract the high morbidity and mortality of cardiovascular disease. 展開(kāi)共有 0 條評(píng)論 還沒(méi)有人評(píng)論,趕快搶個(gè)沙發(fā) |
|