這是關(guān)于pandas的簡短介紹,主要面向新用戶。可以參閱Cookbook了解更復(fù)雜的使用方法。
習(xí)慣上,我們做以下導(dǎo)入
|
In [1]: import pandas as pd In [2]: import numpy as np In [3]: import matplotlib.pyplot as plt |
創(chuàng)建對象
使用傳遞的值列表序列創(chuàng)建序列, 讓pandas創(chuàng)建默認(rèn)整數(shù)索引
|
In [4]: s = pd.Series([1,3,5,np.nan,6,8]) In [5]: s Out[5]: 0 1 1 3 2 5 3 NaN 4 6 5 8 dtype: float64 |
使用傳遞的numpy數(shù)組創(chuàng)建數(shù)據(jù)幀,并使用日期索引和標(biāo)記列.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
In [6]: dates = pd.date_range('20130101',periods=6) In [7]: dates Out[7]: <class 'pandas.tseries.index.DatetimeIndex'> [2013-01-01, ..., 2013-01-06] Length: 6, Freq: D, Timezone: None In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD')) In [9]: df Out[9]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 |
使用傳遞的可轉(zhuǎn)換序列的字典對象創(chuàng)建數(shù)據(jù)幀.
|
In [10]: df2 = pd.DataFrame({ 'A' : 1., ....: 'B' : pd.Timestamp('20130102'), ....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'), ....: 'D' : np.array([3] * 4,dtype='int32'), ....: 'E' : pd.Categorical(["test","train","test","train"]), ....: 'F' : 'foo' }) ....: In [11]: df2 Out[11]: A B C D E F 0 1 2013-01-02 1 3 test foo 1 1 2013-01-02 1 3 train foo 2 1 2013-01-02 1 3 test foo 3 1 2013-01-02 1 3 train foo |
所有明確類型
|
In [12]: df2.dtypes Out[12]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object |
如果你這個正在使用IPython,標(biāo)簽補(bǔ)全列名(以及公共屬性)將自動啟用。這里是將要完成的屬性的子集:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
In [13]: df2.<TAB> df2.A df2.boxplot df2.abs df2.C df2.add df2.clip df2.add_prefix df2.clip_lower df2.add_suffix df2.clip_upper df2.align df2.columns df2.all df2.combine df2.any df2.combineAdd df2.append df2.combine_first df2.apply df2.combineMult df2.applymap df2.compound df2.as_blocks df2.consolidate df2.asfreq df2.convert_objects df2.as_matrix df2.copy df2.astype df2.corr df2.at df2.corrwith df2.at_time df2.count df2.axes df2.cov df2.B df2.cummax df2.between_time df2.cummin df2.bfill df2.cumprod df2.blocks df2.cumsum df2.bool df2.D |
如你所見, 列 A, B, C, 和 D 也是自動完成標(biāo)簽. E 也是可用的; 為了簡便起見,后面的屬性顯示被截斷.
查看數(shù)據(jù)
參閱基礎(chǔ)部分
查看幀頂部和底部行
|
In [14]: df.head() Out[14]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [15]: df.tail(3) Out[15]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 |
顯示索引,列,和底層numpy數(shù)據(jù)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
In [16]: df.index Out[16]: <class 'pandas.tseries.index.DatetimeIndex'> [2013-01-01, ..., 2013-01-06] Length: 6, Freq: D, Timezone: None In [17]: df.columns Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object') In [18]: df.values Out[18]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]]) |
描述顯示數(shù)據(jù)快速統(tǒng)計摘要
|
In [19]: df.describe() Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804 |
轉(zhuǎn)置數(shù)據(jù)
|
In [20]: df.T Out[20]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988 |
按軸排序
|
In [21]: df.sort_index(axis=1, ascending=False) Out[21]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690 |
按值排序
|
In [22]: df.sort(columns='B') Out[22]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 |
選擇器
注釋: 標(biāo)準(zhǔn)Python / Numpy表達(dá)式可以完成這些互動工作, 但在生產(chǎn)代碼中, 我們推薦使用優(yōu)化的pandas數(shù)據(jù)訪問方法, .at, .iat, .loc, .iloc 和 .ix.
參閱索引文檔 索引和選擇數(shù)據(jù) and 多索引/高級索引
讀取
選擇單列, 這會產(chǎn)生一個序列, 等價df.A
|
In [23]: df['A'] Out[23]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64 |
使用[]選擇行片斷
|
In [24]: df[0:3] Out[24]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104'] Out[25]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 |
使用標(biāo)簽選擇
更多信息請參閱按標(biāo)簽選擇
使用標(biāo)簽獲取橫截面
|
In [26]: df.loc[dates[0]] Out[26]: A 0.469112 B -0.282863 C -1.509059 D -1.135632 Name: 2013-01-01 00:00:00, dtype: float64 |
使用標(biāo)簽選擇多軸
|
In [27]: df.loc[:,['A','B']] Out[27]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648 |
顯示標(biāo)簽切片, 包含兩個端點
|
In [28]: df.loc['20130102':'20130104',['A','B']] Out[28]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 |
降低返回對象維度
|
In [29]: df.loc['20130102',['A','B']] Out[29]: A 1.212112 B -0.173215 Name: 2013-01-02 00:00:00, dtype: float64 |
獲取標(biāo)量值
|
In [30]: df.loc[dates[0],'A'] Out[30]: 0.46911229990718628 |
快速訪問并獲取標(biāo)量數(shù)據(jù) (等價上面的方法)
|
In [31]: df.at[dates[0],'A'] Out[31]: 0.46911229990718628 |
按位置選擇
更多信息請參閱按位置參閱
傳遞整數(shù)選擇位置
|
In [32]: df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64 |
使用整數(shù)片斷,效果類似numpy/python
|
In [33]: df.iloc[3:5,0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 |
使用整數(shù)偏移定位列表,效果類似 numpy/python 樣式
|
In [34]: df.iloc[[1,2,4],[0,2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232 |
顯式行切片
|
In [35]: df.iloc[1:3,:] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 |
顯式列切片
|
In [36]: df.iloc[:,1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427 |
顯式獲取一個值
|
In [37]: df.iloc[1,1] Out[37]: -0.17321464905330861 |
快速訪問一個標(biāo)量(等同上個方法)
|
In [38]: df.iat[1,1] Out[38]: -0.17321464905330861 |
布爾索引
使用單個列的值選擇數(shù)據(jù).
|
In [39]: df[df.A > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 |
where 操作.
|
In [40]: df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988 |
使用 isin() 篩選:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
In [41]: df2 = df.copy() In [42]: df2['E']=['one', 'one','two','three','four','three'] In [43]: df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two','four'])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four |
賦值
賦值一個新列,通過索引自動對齊數(shù)據(jù)
|
In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6)) In [46]: s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64 In [47]: df['F'] = s1 |
按標(biāo)簽賦值
|
In [48]: df.at[dates[0],'A'] = 0 |
按位置賦值
通過numpy數(shù)組分配賦值
|
In [50]: df.loc[:,'D'] = np.array([5] * len(df)) |
之前的操作結(jié)果
|
In [51]: df Out[51]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1 2013-01-03 -0.861849 -2.104569 -0.494929 5 2 2013-01-04 0.721555 -0.706771 -1.039575 5 3 2013-01-05 -0.424972 0.567020 0.276232 5 4 2013-01-06 -0.673690 0.113648 -1.478427 5 5 |
where 操作賦值.
|
In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5 |
丟失的數(shù)據(jù)
pandas主要使用np.nan替換丟失的數(shù)據(jù). 默認(rèn)情況下它并不包含在計算中. 請參閱 Missing Data section
重建索引允許更改/添加/刪除指定軸索引,并返回數(shù)據(jù)副本.
|
In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E']) In [56]: df1.loc[dates[0]:dates[1],'E'] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1 2013-01-02 1.212112 -0.173215 0.119209 5 1 1 2013-01-03 -0.861849 -2.104569 -0.494929 5 2 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3 NaN |
刪除任何有丟失數(shù)據(jù)的行.
|
In [58]: df1.dropna(how='any') Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5 1 1 |
填充丟失數(shù)據(jù)
|
In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5 5 1 2013-01-02 1.212112 -0.173215 0.119209 5 1 1 2013-01-03 -0.861849 -2.104569 -0.494929 5 2 5 2013-01-04 0.721555 -0.706771 -1.039575 5 3 5 |
獲取值是否nan的布爾標(biāo)記
|
In [60]: pd.isnull(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True |
運算
參閱二元運算基礎(chǔ)
統(tǒng)計
計算時一般不包括丟失的數(shù)據(jù)
執(zhí)行描述性統(tǒng)計
|
In [61]: df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64 |
在其他軸做相同的運算
|
In [62]: df.mean(1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64 |
用于運算的對象有不同的維度并需要對齊.除此之外,pandas會自動沿著指定維度計算.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1 2013-01-04 3 2013-01-05 5 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s,axis='index') Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4 1 2013-01-04 -2.278445 -3.706771 -4.039575 2 0 2013-01-05 -5.424972 -4.432980 -4.723768 0 -1 2013-01-06 NaN NaN NaN NaN NaN |
Apply
在數(shù)據(jù)上使用函數(shù)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
In [66]: df.apply(np.cumsum) Out[66]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1 2013-01-03 0.350263 -2.277784 -1.884779 15 3 2013-01-04 1.071818 -2.984555 -2.924354 20 6 2013-01-05 0.646846 -2.417535 -2.648122 25 10 2013-01-06 -0.026844 -2.303886 -4.126549 30 15 In [67]: df.apply(lambda x: x.max() - x.min()) Out[67]: A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64 |
直方圖
請參閱 直方圖和離散化
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
In [68]: s = pd.Series(np.random.randint(0,7,size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int32 In [70]: s.value_counts() Out[70]: 4 5 6 2 2 2 1 1 dtype: int64 |
字符串方法
序列可以使用一些字符串處理方法很輕易操作數(shù)據(jù)組中的每個元素,比如以下代碼片斷。 注意字符匹配方法默認(rèn)情況下通常使用正則表達(dá)式(并且大多數(shù)時候都如此). 更多信息請參閱字符串向量方法.
|
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat']) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object |
合并
連接
pandas提供各種工具以簡便合并序列,數(shù)據(jù)楨,和組合對象, 在連接/合并類型操作中使用多種類型索引和相關(guān)數(shù)學(xué)函數(shù).
請參閱合并部分
把pandas對象連接到一起
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 |
連接
SQL樣式合并. 請參閱 數(shù)據(jù)庫style聯(lián)接
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]}) In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on='key') Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5 |
添加
添加行到數(shù)據(jù)增. 參閱 添加
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D']) In [83]: df Out[83]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 In [84]: s = df.iloc[3] In [85]: df.append(s, ignore_index=True) Out[85]: A B C D 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 8 1.453749 1.208843 -0.080952 -0.264610 |
分組
對于“group by”指的是以下一個或多個處理
- 將數(shù)據(jù)按某些標(biāo)準(zhǔn)分割為不同的組
- 在每個獨立組上應(yīng)用函數(shù)
- 組合結(jié)果為一個數(shù)據(jù)結(jié)構(gòu)
請參閱 分組部分
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
In [86]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ....: 'foo', 'bar', 'foo', 'foo'], ....: 'B' : ['one', 'one', 'two', 'three', ....: 'two', 'two', 'one', 'three'], ....: 'C' : np.random.randn(8), ....: 'D' : np.random.randn(8)}) ....: In [87]: df Out[87]: A B C D 0 foo one -1.202872 -0.055224 1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599 4 foo two 1.395433 0.047609 5 bar two -0.392670 -0.136473 6 foo one 0.007207 -0.561757 7 foo three 1.928123 -1.623033 |
分組然后應(yīng)用函數(shù)統(tǒng)計總和存放到結(jié)果組
|
In [88]: df.groupby('A').sum() Out[88]: C D A bar -2.802588 2.42611 foo 3.146492 -0.63958 |
按多列分組為層次索引,然后應(yīng)用函數(shù)
|
In [89]: df.groupby(['A','B']).sum() Out[89]: C D A B bar one -1.814470 2.395985 three -0.595447 0.166599 two -0.392670 -0.136473 foo one -1.195665 -0.616981 three 1.928123 -1.623033 two 2.414034 1.600434 |
重塑
請參閱章節(jié) 分層索引 和 重塑.
堆疊
|
In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', ....: 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', ....: 'one', 'two', 'one', 'two']])) ....: In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [93]: df2 = df[:4] In [94]: df2 Out[94]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 |
堆疊 函數(shù) “壓縮” 數(shù)據(jù)楨的列一個級別.
|
In [95]: stacked = df2.stack() In [96]: stacked Out[96]: first second bar one A 0.029399 B -0.542108 two A 0.282696 B -0.087302 baz one A -1.575170 B 1.771208 two A 0.816482 B 1.100230 dtype: float64 |
被“堆疊”數(shù)據(jù)楨或序列(有多個索引作為索引), 其堆疊的反向操作是未堆棧, 上面的數(shù)據(jù)默認(rèn)反堆疊到上一級別:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
In [97]: stacked.unstack() Out[97]: A B first second bar one 0.029399 -0.542108 two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230 In [98]: stacked.unstack(1) Out[98]: second one two first bar A 0.029399 0.282696 B -0.542108 -0.087302 baz A -1.575170 0.816482 B 1.771208 1.100230 In [99]: stacked.unstack(0) Out[99]: first bar baz second one A 0.029399 -1.575170 B -0.542108 1.771208 two A 0.282696 0.816482 B -0.087302 1.100230 |
數(shù)據(jù)透視表
查看數(shù)據(jù)透視表.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, .....: 'B' : ['A', 'B', 'C'] * 4, .....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2, .....: 'D' : np.random.randn(12), .....: 'E' : np.random.randn(12)}) .....: In [101]: df Out[101]: A B C D E 0 one A foo 1.418757 -0.179666 1 one B foo -1.879024 1.291836 2 two C foo 0.536826 -0.009614 3 three A bar 1.006160 0.392149 4 one B bar -0.029716 0.264599 5 one C bar -1.146178 -0.057409 6 two A foo 0.100900 -1.425638 7 three B foo -1.035018 1.024098 8 one C foo 0.314665 -0.106062 9 one A bar -0.773723 1.824375 10 two B bar -1.170653 0.595974 11 three C bar 0.648740 1.167115 |
我們可以從此數(shù)據(jù)非常容易的產(chǎn)生數(shù)據(jù)透視表:
|
In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C']) Out[102]: C bar foo A B one A -0.773723 1.418757 B -0.029716 -1.879024 C -1.146178 0.314665 three A 1.006160 NaN B NaN -1.035018 C 0.648740 NaN two A NaN 0.100900 B -1.170653 NaN C NaN 0.536826 |
時間序列
pandas有易用,強(qiáng)大且高效的函數(shù)用于高頻數(shù)據(jù)重采樣轉(zhuǎn)換操作(例如,轉(zhuǎn)換秒數(shù)據(jù)到5分鐘數(shù)據(jù)), 這是很普遍的情況,但并不局限于金融應(yīng)用, 請參閱時間序列章節(jié)
|
In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S') In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [105]: ts.resample('5Min', how='sum') Out[105]: 2012-01-01 25083 Freq: 5T, dtype: int32 |
時區(qū)表示
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D') In [107]: ts = pd.Series(np.random.randn(len(rng)), rng) In [108]: ts Out[108]: 2012-03-06 0.464000 2012-03-07 0.227371 2012-03-08 -0.496922 2012-03-09 0.306389 2012-03-10 -2.290613 Freq: D, dtype: float64 In [109]: ts_utc = ts.tz_localize('UTC') In [110]: ts_utc Out[110]: 2012-03-06 00:00:00+00:00 0.464000 2012-03-07 00:00:00+00:00 0.227371 2012-03-08 00:00:00+00:00 -0.496922 2012-03-09 00:00:00+00:00 0.306389 2012-03-10 00:00:00+00:00 -2.290613 Freq: D, dtype: float64 |
轉(zhuǎn)換到其它時區(qū)
|
In [111]: ts_utc.tz_convert('US/Eastern') Out[111]: 2012-03-05 19:00:00-05:00 0.464000 2012-03-06 19:00:00-05:00 0.227371 2012-03-07 19:00:00-05:00 -0.496922 2012-03-08 19:00:00-05:00 0.306389 2012-03-09 19:00:00-05:00 -2.290613 Freq: D, dtype: float64 |
轉(zhuǎn)換不同的時間跨度
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M') In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng) In [114]: ts Out[114]: 2012-01-31 -1.134623 2012-02-29 -1.561819 2012-03-31 -0.260838 2012-04-30 0.281957 2012-05-31 1.523962 Freq: M, dtype: float64 In [115]: ps = ts.to_period() In [116]: ps Out[116]: 2012-01 -1.134623 2012-02 -1.561819 2012-03 -0.260838 2012-04 0.281957 2012-05 1.523962 Freq: M, dtype: float64 In [117]: ps.to_timestamp() Out[117]: 2012-01-01 -1.134623 2012-02-01 -1.561819 2012-03-01 -0.260838 2012-04-01 0.281957 2012-05-01 1.523962 Freq: MS, dtype: float64 |
轉(zhuǎn)換時段并且使用一些運算函數(shù), 下例中, 我們轉(zhuǎn)換年報11月到季度結(jié)束每日上午9點數(shù)據(jù)
|
In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV') In [119]: ts = pd.Series(np.random.randn(len(prng)), prng) In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9 In [121]: ts.head() Out[121]: 1990-03-01 09:00 -0.902937 1990-06-01 09:00 0.068159 1990-09-01 09:00 -0.057873 1990-12-01 09:00 -0.368204 1991-03-01 09:00 -1.144073 Freq: H, dtype: float64 |
分類
自版本0.15起, pandas可以在數(shù)據(jù)楨中包含分類. 完整的文檔, 請查看分類介紹 and the API文檔.
|
In [122]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']}) |
轉(zhuǎn)換原始類別為分類數(shù)據(jù)類型.
|
In [123]: df["grade"] = df["raw_grade"].astype("category") In [124]: df["grade"] Out[124]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e] |
重命令分類為更有意義的名稱 (分配到Series.cat.categories對應(yīng)位置!)
|
In [125]: df["grade"].cat.categories = ["very good", "good", "very bad"] |
重排順分類,同時添加缺少的分類(序列 .cat方法下返回新默認(rèn)序列)
|
In [126]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [127]: df["grade"] Out[127]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good] |
排列分類中的順序,不是按詞匯排列.
|
In [128]: df.sort("grade") Out[128]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good |
類別列分組,并且也顯示空類別.
|
In [129]: df.groupby("grade").size() Out[129]: grade very bad 1 bad NaN medium NaN good 2 very good 3 dtype: float64 |
繪圖
繪圖文檔.
|
In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000)) In [131]: ts = ts.cumsum() In [132]: ts.plot() Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0xb02091ac> |
在數(shù)據(jù)楨中,可以很方便的繪制帶標(biāo)簽列:
|
In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, .....: columns=['A', 'B', 'C', 'D']) .....: In [134]: df = df.cumsum() In [135]: plt.figure(); df.plot(); plt.legend(loc='best') Out[135]: <matplotlib.legend.Legend at 0xb01c9cac> |
獲取數(shù)據(jù)輸入/輸出
CSV
寫入csv文件
|
In [136]: df.to_csv('foo.csv') |
讀取csv文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
In [137]: pd.read_csv('foo.csv') Out[137]: Unnamed: 0 A B C D 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 .. ... ... ... ... ... 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns] |
HDF5
讀寫HDF存儲
寫入HDF5存儲
|
In [138]: df.to_hdf('foo.h5','df') |
讀取HDF5存儲
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
In [139]: pd.read_hdf('foo.h5','df') Out[139]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns] |
Excel
讀寫MS Excel
寫入excel文件
|
In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1') |
讀取excel文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']) Out[141]: A B C D 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202 2000-01-06 0.478344 0.449933 -0.741620 -1.962409 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753 ... ... ... ... ... 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns] |
陷阱
如果嘗試這樣操作可能會看到像這樣的異常:
|
>>> if pd.Series([False, True, False]): print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all(). |
查看對照獲取解釋和怎么做的幫助
也可以查看陷阱.
|