目前正在研發(fā)、將來終將成為主流射頻收發(fā)器的CMOS射頻電路的體系結(jié)構(gòu)和電路設(shè)計,設(shè)計實例將展示CMOS射頻電路的良好性能,并預(yù)示CMOS射頻集成電路取代砷化鎵和SiGe電路實現(xiàn)系統(tǒng)集成。 CMOS射頻收發(fā)器原理:傳統(tǒng)的射頻收發(fā)電路普遍采用超外差結(jié)構(gòu),這種成熟的體系結(jié)構(gòu)需要采用二級混頻和片外聲表面濾波器,成本高。正在研發(fā)的CMOS低中頻或直接轉(zhuǎn)換體系結(jié)構(gòu)只需要采用一級混頻,同時能節(jié)省片外聲表面濾波器。但是直接轉(zhuǎn)換的體系結(jié)構(gòu)需要克服直流失調(diào)等問題。采用CMOS射頻收發(fā)電路的最大優(yōu)點是可以和基帶處理器(數(shù)字電路)及A/D、D/A轉(zhuǎn)換器(混合信號電路)集成于一個芯片。單片集成的含射頻、基帶及模數(shù)、數(shù)模轉(zhuǎn)換電路使電路可靠性好,功耗低和成本低。單片集成CMOS無線通信電路是目前研究熱點,正走上商業(yè)化。 CMOS射頻IC電路:采用直接轉(zhuǎn)換的CMOS射頻IC主要有低噪聲放大器、混頻電路、功率驅(qū)動電路和頻率綜合電路等射頻單元組成。在射頻領(lǐng)域,我們更多注意的是功率傳輸和放大,其中低噪聲放大器的電路圖如圖所示。
它的核心技術(shù)是輸入阻抗匹配和輸出負載的設(shè)計,片上電感作為負載可以獲得較高的增益和頻率特性,為了抑制共模電平,差分結(jié)構(gòu)的低噪聲放大器也經(jīng)常采用。國內(nèi)已有CMOS混頻器報導(dǎo)采用吉爾布特乘法單元的混頻電路如圖3所示,混頻器的性能主要是線性度,在提高線性度方面,目前有人采用電感負載和共源極電流耦合輸入。功率驅(qū)動電路一般會采用二級功率放大的電路,為了滿足不同射頻系統(tǒng)的需要和保證輸出功率,功率驅(qū)動電路需要考慮增益控制電路和封裝、連線及引腳的分布參數(shù)。為了得到低噪聲時鐘和低相位噪聲的正交信號,采用片上電感和變?nèi)荻O管的LC信頻壓控器及二分頻正交信號產(chǎn)生器是一種好的選擇。
采用倍頻VCO可以減少射頻信號對VCO的牽引和VCO對信號的泄漏。Sigma-Delta分數(shù)分頻能夠進一步降低VCO的相位噪聲。低中頻(2MHz中心頻率)體系結(jié)構(gòu)和直接轉(zhuǎn)換的藍牙、無線局域網(wǎng)和WCDMA射頻電路。圖6是單片集成的CMOS射頻收發(fā)電路芯片照片,芯片左上角是正交時鐘產(chǎn)生電路,右下角是功率放大電路,右上角是復(fù)數(shù)濾波器。在深亞微米CMOS工藝線流片后,對各功能塊進行測試,電路達到了設(shè)計的要求,能夠滿足藍牙接收芯片必須的功耗和性能。 |
|