小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

大數(shù)據(jù)入門(mén)的四個(gè)必備常識(shí)

 天道酬勤YXJ1 2016-05-08

大數(shù)據(jù)入門(mén)的四個(gè)必備常識(shí)

一、大數(shù)據(jù)分析的五個(gè)基本方面1,可視化分析

大數(shù)據(jù)分析的使用者有大數(shù)據(jù)分析專(zhuān)家,同時(shí)還有普通用戶(hù),但是他們二者對(duì)于大數(shù)據(jù)分析最基本的要求就是可視化分析,因?yàn)榭梢暬治瞿軌蛑庇^的呈現(xiàn)大數(shù)據(jù)特點(diǎn),同時(shí)能夠非常容易被讀者所接受,就如同看圖說(shuō)話(huà)一樣簡(jiǎn)單明了。

2,數(shù)據(jù)挖掘算法

大數(shù)據(jù)分析的理論核心就是數(shù)據(jù)挖掘算法,各種數(shù)據(jù)挖掘的算法基于不同的數(shù)據(jù)類(lèi)型和格式才能更加科學(xué)的呈現(xiàn)出數(shù)據(jù)本身具備的特點(diǎn),也正是因?yàn)檫@些被全世界統(tǒng)計(jì)學(xué)家所公認(rèn)的各種統(tǒng)計(jì)方法(可以稱(chēng)之為真理)才能深入數(shù)據(jù)內(nèi)部,挖掘出公認(rèn)的價(jià)值。另外一個(gè)方面也是因?yàn)橛羞@些數(shù)據(jù)挖掘的算法才能更快速的處理大數(shù)據(jù),如果一個(gè)算法得花上好幾年才能得出結(jié)論,那大數(shù)據(jù)的價(jià)值也就無(wú)從說(shuō)起了。

3,預(yù)測(cè)性分析能力

大數(shù)據(jù)分析最終要的應(yīng)用領(lǐng)域之一就是預(yù)測(cè)性分析,從大數(shù)據(jù)中挖掘出特點(diǎn),通過(guò)科學(xué)的建立模型,之后便可以通過(guò)模型帶入新的數(shù)據(jù),從而預(yù)測(cè)未來(lái)的數(shù)據(jù)。

4,語(yǔ)義引擎

大數(shù)據(jù)分析廣泛應(yīng)用于網(wǎng)絡(luò)數(shù)據(jù)挖掘,可從用戶(hù)的搜索關(guān)鍵詞、標(biāo)簽關(guān)鍵詞、或其他輸入語(yǔ)義,分析,判斷用戶(hù)需求,從而實(shí)現(xiàn)更好的用戶(hù)體驗(yàn)和廣告匹配。

5,數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理

大數(shù)據(jù)分析離不開(kāi)數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理,高質(zhì)量的數(shù)據(jù)和有效的數(shù)據(jù)管理,無(wú)論是在學(xué)術(shù)研究還是在商業(yè)應(yīng)用領(lǐng)域,都能夠保證分析結(jié)果的真實(shí)和有價(jià)值。 大數(shù)據(jù)分析的基礎(chǔ)就是以上五個(gè)方面,當(dāng)然更加深入大數(shù)據(jù)分析的話(huà),還有很多很多更加有特點(diǎn)的、更加深入的、更加專(zhuān)業(yè)的大數(shù)據(jù)分析方法。

二、如何選擇適合的數(shù)據(jù)分析工具

要明白分析什么數(shù)據(jù),大數(shù)據(jù)要分析的數(shù)據(jù)類(lèi)型主要有四大類(lèi):

  1. 交易數(shù)據(jù)(TRANSACTION DATA)

    大數(shù)據(jù)平臺(tái)能夠獲取時(shí)間跨度更大、更海量的結(jié)構(gòu)化交易數(shù)據(jù),這樣就可以對(duì)更廣泛的交易數(shù)據(jù)類(lèi)型進(jìn)行分析,不僅僅包括POS或電子商務(wù)購(gòu)物數(shù)據(jù),還包括行為交易數(shù)據(jù),例如Web服務(wù)器記錄的互聯(lián)網(wǎng)點(diǎn)擊流數(shù)據(jù)日志。

  2. 人為數(shù)據(jù)(HUMAN-GENERATED DATA)

    非結(jié)構(gòu)數(shù)據(jù)廣泛存在于電子郵件、文檔、圖片、音頻、視頻,以及通過(guò)博客、維基,尤其是社交媒體產(chǎn)生的數(shù)據(jù)流。這些數(shù)據(jù)為使用文本分析功能進(jìn)行分析提供了豐富的數(shù)據(jù)源泉。

  3. 移動(dòng)數(shù)據(jù)(MOBILE DATA)

    能夠上網(wǎng)的智能手機(jī)和平板越來(lái)越普遍。這些移動(dòng)設(shè)備上的App都能夠追蹤和溝通無(wú)數(shù)事件,從App內(nèi)的交易數(shù)據(jù)(如搜索產(chǎn)品的記錄事件)到個(gè)人信息資料或狀態(tài)報(bào)告事件(如地點(diǎn)變更即報(bào)告一個(gè)新的地理編碼)。

  4. 機(jī)器和傳感器數(shù)據(jù)(MACHINE AND SENSOR DATA)

    這包括功能設(shè)備創(chuàng)建或生成的數(shù)據(jù),例如智能電表、智能溫度控制器、工廠(chǎng)機(jī)器和連接互聯(lián)網(wǎng)的家用電器。這些設(shè)備可以配置為與互聯(lián)網(wǎng)絡(luò)中的其他節(jié)點(diǎn)通信,還可以自動(dòng)向中央服務(wù)器傳輸數(shù)據(jù),這樣就可以對(duì)數(shù)據(jù)進(jìn)行分析。機(jī)器和傳感器數(shù)據(jù)是來(lái)自新興的物聯(lián)網(wǎng)(IoT)所產(chǎn)生的主要例子。來(lái)自物聯(lián)網(wǎng)的數(shù)據(jù)可以用于構(gòu)建分析模型,連續(xù)監(jiān)測(cè)預(yù)測(cè)性行為(如當(dāng)傳感器值表示有問(wèn)題時(shí)進(jìn)行識(shí)別),提供規(guī)定的指令(如警示技術(shù)人員在真正出問(wèn)題之前檢查設(shè)備)。

數(shù)據(jù)分析工具達(dá)到哪些要求和目的?
  1. 能應(yīng)用高級(jí)的分析算法和模型提供分析
  2. 以大數(shù)據(jù)平臺(tái)為引擎,比如Hadoop或其他高性能分析系統(tǒng)
  3. 能夠適用于多種數(shù)據(jù)源的結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)
  4. 隨著用于分析模型的數(shù)據(jù)的增加,能夠?qū)崿F(xiàn)擴(kuò)展
  5. 分析模型可以,或者已經(jīng)集成到數(shù)據(jù)可視化工具
  6. 能夠和其他技術(shù)集成
另外,工具必須包含必備的一些功能,包括集成算法和支持?jǐn)?shù)據(jù)挖掘技術(shù),包括(但不限于):
  1. 集群和細(xì)分:
    把一個(gè)大的實(shí)體分割擁有共同特征的小團(tuán)體。比如分析收集來(lái)的客戶(hù),確定更細(xì)分的目標(biāo)市場(chǎng)。
  2. 分類(lèi):
    把數(shù)據(jù)組織進(jìn)預(yù)定類(lèi)別。比如根據(jù)細(xì)分模型決定客戶(hù)改如何進(jìn)行分類(lèi)。
  3. 恢復(fù):
    用于恢復(fù)從屬變量和一個(gè)及一個(gè)以上獨(dú)立變量之間的關(guān)系,幫助決定從屬變量如何根據(jù)獨(dú)立變量的變化而變化。比如使用地理數(shù)據(jù)、凈收入、夏日平均溫度和占地面積預(yù)測(cè)財(cái)產(chǎn)的未來(lái)走向。
  4. 聯(lián)合和項(xiàng)目集挖掘:
    在大數(shù)據(jù)集中尋找變量之間的相關(guān)關(guān)系。比如它可以幫助呼叫中心代表提供基于呼叫者客戶(hù)細(xì)分、關(guān)系和投訴類(lèi)型的更精準(zhǔn)的信息。
  5. 相似性和聯(lián)系:
    用于非直接的集群算法。相似性積分算法可用于決定備用集群中實(shí)體的相似性。
  6. 神經(jīng)網(wǎng)絡(luò):
    用于機(jī)器學(xué)習(xí)的非直接分析。
人們通過(guò)數(shù)據(jù)分析工具了解什么
  • 數(shù)據(jù)科學(xué)家們,他們想使用更復(fù)雜的數(shù)據(jù)類(lèi)型實(shí)現(xiàn)更復(fù)雜的分析,熟知如何設(shè)計(jì),如何應(yīng)用基礎(chǔ)模型來(lái)評(píng)估內(nèi)在傾向性或偏差。
  • 業(yè)務(wù)分析師,他們更像是隨性的用戶(hù),想要用數(shù)據(jù)來(lái)實(shí)現(xiàn)主動(dòng)數(shù)據(jù)發(fā)現(xiàn),或者實(shí)現(xiàn)現(xiàn)有信息和部分預(yù)測(cè)分析的可視化。
  • 企業(yè)經(jīng)理,他們想要了解模型和結(jié)論。
  • IT開(kāi)發(fā)人員,他們?yōu)橐陨纤蓄?lèi)用戶(hù)提供支持。
如何選擇最適合的大數(shù)據(jù)分析軟件

分析師的專(zhuān)業(yè)知識(shí)和技能。有些工具的目標(biāo)受眾是新手用戶(hù),有的是專(zhuān)業(yè)數(shù)據(jù)分析師,有的則是針對(duì)這兩種受眾設(shè)計(jì)的。

  • 分析多樣性。

    根據(jù)不同的用戶(hù)案例和應(yīng)用,企業(yè)用戶(hù)可能需要支持不同類(lèi)型的分析功能,使用特定類(lèi)型的建模(例如回歸、聚類(lèi)、分割、行為建模和決策樹(shù))。這些功能已經(jīng)能夠廣泛支持高水平、不同形式的分析建模,但是還是有一些廠(chǎng)商投入數(shù)十年的精力,調(diào)整不同版本的算法,增加更加高級(jí)的功能。理解哪些模型與企業(yè)面臨的問(wèn)題最相關(guān),根據(jù)產(chǎn)品如何最好地滿(mǎn)足用戶(hù)的業(yè)務(wù)需求進(jìn)行產(chǎn)品評(píng)估,這些都非常重要。

  • 數(shù)據(jù)范圍分析。

    要分析的數(shù)據(jù)范圍涉及很多方面,如結(jié)構(gòu)化和非結(jié)構(gòu)化信息,傳統(tǒng)的本地?cái)?shù)據(jù)庫(kù)和數(shù)據(jù)倉(cāng)庫(kù)、基于云端的數(shù)據(jù)源,大數(shù)據(jù)平臺(tái)(如Hadoop)上的數(shù)據(jù)管理等。但是,不同產(chǎn)品對(duì)非傳統(tǒng)數(shù)據(jù)湖(在Hadoop內(nèi)或其他用于提供橫向擴(kuò)展的NoSQL數(shù)據(jù)管理系統(tǒng)內(nèi))上的數(shù)據(jù)管理提供的支持程度不一。如何選擇產(chǎn)品,企業(yè)必須考慮獲取和處理數(shù)據(jù)量及數(shù)據(jù)種類(lèi)的特定需求。

  • 協(xié)作。

    企業(yè)規(guī)模越大,越有可能需要跨部門(mén)、在諸多分析師之間分享分析、模型和應(yīng)用。企業(yè)如果有很多分析師分布在各部門(mén),對(duì)結(jié)果如何進(jìn)行解釋和分析,可能會(huì)需要增加更多的共享模型和協(xié)作的方法。

  • 許可證書(shū)和維護(hù)預(yù)算。

    幾乎所有廠(chǎng)商的產(chǎn)品都分不同的版本,購(gòu)買(mǎi)費(fèi)用和整個(gè)運(yùn)營(yíng)成本各不相同。許可證書(shū)費(fèi)用與特性、功能、對(duì)分析數(shù)據(jù)的量或者產(chǎn)品可使用的節(jié)點(diǎn)數(shù)的限制成正比。

  • 易用性。沒(méi)有統(tǒng)計(jì)背景的商業(yè)分析師是否也能夠輕松地開(kāi)發(fā)分析和應(yīng)用呢?確定產(chǎn)品是否提供了方便開(kāi)發(fā)和分析的可視化方法。
  • 非結(jié)構(gòu)化數(shù)據(jù)使用率。

    確認(rèn)產(chǎn)品能夠使用不同類(lèi)型的非結(jié)構(gòu)化數(shù)據(jù)(文檔、電子郵件、圖像、視頻、演示文稿、社交媒體渠道信息等),并且能夠解析和利用收到的信息。

  • 可擴(kuò)展性和可伸縮性。

    隨著數(shù)據(jù)量的不斷增長(zhǎng)和數(shù)據(jù)管理平臺(tái)的不斷擴(kuò)展,要評(píng)估不同的分析產(chǎn)品如何跟隨處理與存儲(chǔ)容量的增長(zhǎng)而增長(zhǎng)。

三、如何區(qū)分三個(gè)大數(shù)據(jù)熱門(mén)職業(yè)——數(shù)據(jù)科學(xué)家、數(shù)據(jù)工程師、數(shù)據(jù)分析師

隨著大數(shù)據(jù)的愈演愈熱,相關(guān)大數(shù)據(jù)的職業(yè)也成為熱門(mén),給人才發(fā)展帶來(lái)帶來(lái)了很多機(jī)會(huì)。數(shù)據(jù)科學(xué)家、數(shù)據(jù)工程師、數(shù)據(jù)分析師已經(jīng)成為大數(shù)據(jù)行業(yè)最熱門(mén)的職位。它們是如何定義的?具體是做什么工作的?需要哪些技能?讓我們一起來(lái)看看吧。

這3個(gè)職業(yè)是如何定位的?

  • 數(shù)據(jù)科學(xué)家是個(gè)什么樣的存在

    數(shù)據(jù)科學(xué)家是指能采用科學(xué)方法、運(yùn)用數(shù)據(jù)挖掘工具對(duì)復(fù)雜多量的數(shù)字、符號(hào)、文字、網(wǎng)址、音頻或視頻等信息進(jìn)行數(shù)字化重現(xiàn)與認(rèn)識(shí),并能尋找新的數(shù)據(jù)洞察的工程師或?qū)<?不同于統(tǒng)計(jì)學(xué)家或分析師)。

  • 數(shù)據(jù)工程師是如何定義的

    數(shù)據(jù)工程師一般被定義成“深刻理解統(tǒng)計(jì)學(xué)科的明星軟件工程師”。如果你正為一個(gè)商業(yè)問(wèn)題煩惱,那么你需要一個(gè)數(shù)據(jù)工程師。他們的核心價(jià)值在于他們借由清晰數(shù)據(jù)創(chuàng)建數(shù)據(jù)管道的能力。充分了解文件系統(tǒng),分布式計(jì)算與數(shù)據(jù)庫(kù)是成為一位優(yōu)秀數(shù)據(jù)工程師的必要技能。 數(shù)據(jù)工程師對(duì)演算法有相當(dāng)好的理解。因此,數(shù)據(jù)工程師理應(yīng)能運(yùn)行基本數(shù)據(jù)模型。商業(yè)需求的高端化催生了演算高度復(fù)雜化的需求。很多時(shí)候,這些需求超過(guò)了數(shù)據(jù)工程師掌握知識(shí)范圍,這個(gè)時(shí)候你就需要打電話(huà)尋求數(shù)據(jù)科學(xué)家的幫助。

  • 數(shù)據(jù)分析師該如何理解

    數(shù)據(jù)分析師指的是不同行業(yè)中,專(zhuān)門(mén)從事行業(yè)數(shù)據(jù)搜集、整理、分析,并依據(jù)數(shù)據(jù)做出行業(yè)研究、評(píng)估和預(yù)測(cè)的專(zhuān)業(yè)人員。他們知道如何提出正確的問(wèn)題,非常善于數(shù)據(jù)分析,數(shù)據(jù)可視化和數(shù)據(jù)呈現(xiàn)。

這3個(gè)職業(yè)具體有什么職責(zé)
  • 數(shù)據(jù)科學(xué)家的工作職責(zé)

    數(shù)據(jù)科學(xué)家傾向于用探索數(shù)據(jù)的方式來(lái)看待周?chē)氖澜?。把大量散亂的數(shù)據(jù)變成結(jié)構(gòu)化的可供分析的數(shù)據(jù),還要找出豐富的數(shù)據(jù)源,整合其他可能不完整的數(shù)據(jù)源,并清理成結(jié)果數(shù)據(jù)集。新的競(jìng)爭(zhēng)環(huán)境中,挑戰(zhàn)不斷地變化,新數(shù)據(jù)不斷地流入,數(shù)據(jù)科學(xué)家需要幫助決策者穿梭于各種分析,從臨時(shí)數(shù)據(jù)分析到持續(xù)的數(shù)據(jù)交互分析。當(dāng)他們有所發(fā)現(xiàn),便交流他們的發(fā)現(xiàn),建議新的業(yè)務(wù)方向。他們很有創(chuàng)造力的展示視覺(jué)化的信息,也讓找到的模式清晰而有說(shuō)服力。把蘊(yùn)含在數(shù)據(jù)中的規(guī)律建議給Boss,從而影響產(chǎn)品,流程和決策。

  • 數(shù)據(jù)工程師的工作職責(zé)

    分析歷史、預(yù)測(cè)未來(lái)、優(yōu)化選擇,這是大數(shù)據(jù)工程師在“玩數(shù)據(jù)”時(shí)最重要的三大任務(wù)。通過(guò)這三個(gè)工作方向,他們幫助企業(yè)做出更好的商業(yè)決策。

    大數(shù)據(jù)工程師一個(gè)很重要的工作,就是通過(guò)分析數(shù)據(jù)來(lái)找出過(guò)去事件的特征。比如,騰訊的數(shù)據(jù)團(tuán)隊(duì)正在搭建一個(gè)數(shù)據(jù)倉(cāng)庫(kù),把公司所有網(wǎng)絡(luò)平臺(tái)上數(shù)量龐大、不規(guī)整的數(shù)據(jù)信息進(jìn)行梳理,總結(jié)出可供查詢(xún)的特征,來(lái)支持公司各類(lèi)業(yè)務(wù)對(duì)數(shù)據(jù)的需求,包括廣告投放、游戲開(kāi)發(fā)、社交網(wǎng)絡(luò)等。

    找出過(guò)去事件的特征,最大的作用是可以幫助企業(yè)更好地認(rèn)識(shí)消費(fèi)者。通過(guò)分析用戶(hù)以往的行為軌跡,就能夠了解這個(gè)人,并預(yù)測(cè)他的行為。

    通過(guò)引入關(guān)鍵因素,大數(shù)據(jù)工程師可以預(yù)測(cè)未來(lái)的消費(fèi)趨勢(shì)。在阿里媽媽的營(yíng)銷(xiāo)平臺(tái)上,工程師正試圖通過(guò)引入氣象數(shù)據(jù)來(lái)幫助淘寶賣(mài)家做生意。比如今年夏天不熱,很可能某些產(chǎn)品就沒(méi)有去年暢銷(xiāo),除了空調(diào)、電扇,背心、游泳衣等都可能會(huì)受其影響。那么我們就會(huì)建立氣象數(shù)據(jù)和銷(xiāo)售數(shù)據(jù)之間的關(guān)系,找到與之相關(guān)的品類(lèi),提前警示賣(mài)家周轉(zhuǎn)庫(kù)存。

    根據(jù)不同企業(yè)的業(yè)務(wù)性質(zhì),大數(shù)據(jù)工程師可以通過(guò)數(shù)據(jù)分析來(lái)達(dá)到不同的目的。以騰訊來(lái)說(shuō),能反映大數(shù)據(jù)工程師工作的最簡(jiǎn)單直接的例子就是選項(xiàng)測(cè)試(AB Test),即幫助產(chǎn)品經(jīng)理在A、B兩個(gè)備選方案中做出選擇。在過(guò)去,決策者只能依據(jù)經(jīng)驗(yàn)進(jìn)行判斷,但如今大數(shù)據(jù)工程師可以通過(guò)大范圍地實(shí)時(shí)測(cè)試—比如,在社交網(wǎng)絡(luò)產(chǎn)品的例子中,讓一半用戶(hù)看到A界面,另一半使用B界面,觀察統(tǒng)計(jì)一段時(shí)間內(nèi)的點(diǎn)擊率和轉(zhuǎn)化率,以此幫助市場(chǎng)部做出最終選擇。

  • 數(shù)據(jù)分析師的工作職責(zé)

    互聯(lián)網(wǎng)本身具有數(shù)字化和互動(dòng)性的特征,這種屬性特征給數(shù)據(jù)搜集、整理、研究帶來(lái)了革命性的突破。以往“原子世界”中數(shù)據(jù)分析師要花較高的成本(資金、資源和時(shí)間)獲取支撐研究、分析的數(shù)據(jù),數(shù)據(jù)的豐富性、全面性、連續(xù)性和及時(shí)性都比互聯(lián)網(wǎng)時(shí)代差很多。

    與傳統(tǒng)的數(shù)據(jù)分析師相比,互聯(lián)網(wǎng)時(shí)代的數(shù)據(jù)分析師面臨的不是數(shù)據(jù)匱乏,而是數(shù)據(jù)過(guò)剩。因此,互聯(lián)網(wǎng)時(shí)代的數(shù)據(jù)分析師必須學(xué)會(huì)借助技術(shù)手段進(jìn)行高效的數(shù)據(jù)處理。更為重要的是,互聯(lián)網(wǎng)時(shí)代的數(shù)據(jù)分析師要不斷在數(shù)據(jù)研究的方法論方面進(jìn)行創(chuàng)新和突破。

    就行業(yè)而言,數(shù)據(jù)分析師的價(jià)值與此類(lèi)似。就新聞出版行業(yè)而言,無(wú)論在任何時(shí)代,媒體運(yùn)營(yíng)者能否準(zhǔn)確、詳細(xì)和及時(shí)地了解受眾狀況和變化趨勢(shì),都是媒體成敗的關(guān)鍵。

    此外,對(duì)于新聞出版等內(nèi)容產(chǎn)業(yè)來(lái)說(shuō),更為關(guān)鍵的是,數(shù)據(jù)分析師可以發(fā)揮內(nèi)容消費(fèi)者數(shù)據(jù)分析的職能,這是支撐新聞出版機(jī)構(gòu)改善客戶(hù)服務(wù)的關(guān)鍵職能。

想要從事這3個(gè)職業(yè)需要掌握什么技能?A. 數(shù)據(jù)科學(xué)家需要掌握的技能

1,計(jì)算機(jī)科學(xué)

一般來(lái)說(shuō),數(shù)據(jù)科學(xué)家大多要求具備編程、計(jì)算機(jī)科學(xué)相關(guān)的專(zhuān)業(yè)背景。簡(jiǎn)單來(lái)說(shuō),就是對(duì)處理大數(shù)據(jù)所必需的hadoop、Mahout等大規(guī)模并行處理技術(shù)與機(jī)器學(xué)習(xí)相關(guān)的技能。

2,數(shù)學(xué)、統(tǒng)計(jì)、數(shù)據(jù)挖掘等

除了數(shù)學(xué)、統(tǒng)計(jì)方面的素養(yǎng)之外,還需要具備使用SPSS、SAS等主流統(tǒng)計(jì)分析軟件的技能。其中,面向統(tǒng)計(jì)分析的開(kāi)源編程語(yǔ)言及其運(yùn)行環(huán)境“R”最近備受矚目。R的強(qiáng)項(xiàng)不僅在于其包含了豐富的統(tǒng)計(jì)分析庫(kù),而且具備將結(jié)果進(jìn)行可視化的高品質(zhì)圖表生成功能,并可以通過(guò)簡(jiǎn)單的命令來(lái)運(yùn)行。此外,它還具備稱(chēng)為CRAN(The Comprehensive R Archive Network)的包擴(kuò)展機(jī)制,通過(guò)導(dǎo)入擴(kuò)展包就可以使用標(biāo)準(zhǔn)狀態(tài)下所不支持的函數(shù)和數(shù)據(jù)集。

3,數(shù)據(jù)可視化(Visualization)

信息的質(zhì)量很大程度上依賴(lài)于其表達(dá)方式。對(duì)數(shù)字羅列所組成的數(shù)據(jù)中所包含的意義進(jìn)行分析,開(kāi)發(fā)Web原型,使用外部API將圖表、地圖、Dashboard等其他服務(wù)統(tǒng)一起來(lái),從而使分析結(jié)果可視化,這是對(duì)于數(shù)據(jù)科學(xué)家來(lái)說(shuō)十分重要的技能之一。

B. 數(shù)據(jù)工程師需要掌握的技能

1,數(shù)學(xué)及統(tǒng)計(jì)學(xué)相關(guān)的背景

對(duì)于大數(shù)據(jù)工程師的要求都是希望是統(tǒng)計(jì)學(xué)和數(shù)學(xué)背景的碩士或博士學(xué)歷。缺乏理論背景的數(shù)據(jù)工作者,更容易進(jìn)入一個(gè)技能上的危險(xiǎn)區(qū)域(Danger Zone)—一堆數(shù)字,按照不同的數(shù)據(jù)模型和算法總能捯飭出一些結(jié)果來(lái),但如果你不知道那代表什么,就并不是真正有意義的結(jié)果,并且那樣的結(jié)果還容易誤導(dǎo)你。只有具備一定的理論知識(shí),才能理解模型、復(fù)用模型甚至創(chuàng)新模型,來(lái)解決實(shí)際問(wèn)題。

2,計(jì)算機(jī)編碼能力

實(shí)際開(kāi)發(fā)能力和大規(guī)模的數(shù)據(jù)處理能力是作為大數(shù)據(jù)工程師的一些必備要素。因?yàn)樵S多數(shù)據(jù)的價(jià)值來(lái)自于挖掘的過(guò)程,你必須親自動(dòng)手才能發(fā)現(xiàn)金子的價(jià)值。舉例來(lái)說(shuō),現(xiàn)在人們?cè)谏缃痪W(wǎng)絡(luò)上所產(chǎn)生的許多記錄都是非結(jié)構(gòu)化的數(shù)據(jù),如何從這些毫無(wú)頭緒的文字、語(yǔ)音、圖像甚至視頻中攫取有意義的信息就需要大數(shù)據(jù)工程師親自挖掘。即使在某些團(tuán)隊(duì)中,大數(shù)據(jù)工程師的職責(zé)以商業(yè)分析為主,但也要熟悉計(jì)算機(jī)處理大數(shù)據(jù)的方式。

3,對(duì)特定應(yīng)用領(lǐng)域或行業(yè)的知識(shí)

大數(shù)據(jù)工程師這個(gè)角色很重要的一點(diǎn)是,不能脫離市場(chǎng),因?yàn)榇髷?shù)據(jù)只有和特定領(lǐng)域的應(yīng)用結(jié)合起來(lái)才能產(chǎn)生價(jià)值。所以,在某個(gè)或多個(gè)垂直行業(yè)的經(jīng)歷能為應(yīng)聘者積累對(duì)行業(yè)的認(rèn)知,對(duì)于之后成為大數(shù)據(jù)工程師有很大幫助,因此這也是應(yīng)聘這個(gè)崗位時(shí)較有說(shuō)服力的加分項(xiàng)。

C. 數(shù)據(jù)分析師需要掌握的技能

1、懂業(yè)務(wù)。從事數(shù)據(jù)分析工作的前提就會(huì)需要懂業(yè)務(wù),即熟悉行業(yè)知識(shí)、公司業(yè)務(wù)及流程,最好有自己獨(dú)到的見(jiàn)解,若脫離行業(yè)認(rèn)知和公司業(yè)務(wù)背景,分析的結(jié)果只會(huì)是脫了線(xiàn)的風(fēng)箏,沒(méi)有太大的使用價(jià)值。

2、懂管理。一方面是搭建數(shù)據(jù)分析框架的要求,比如確定分析思路就需要用到營(yíng)銷(xiāo)、管理等理論知識(shí)來(lái)指導(dǎo),如果不熟悉管理理論,就很難搭建數(shù)據(jù)分析的框架,后續(xù)的數(shù)據(jù)分析也很難進(jìn)行。另一方面的作用是針對(duì)數(shù)據(jù)分析結(jié)論提出有指導(dǎo)意義的分析建議。

3、懂分析。指掌握數(shù)據(jù)分析基本原理與一些有效的數(shù)據(jù)分析方法,并能靈活運(yùn)用到實(shí)踐工作中,以便有效的開(kāi)展數(shù)據(jù)分析。基本的分析方法有:對(duì)比分析法、分組分析法、交叉分析法、結(jié)構(gòu)分析法、漏斗圖分析法、綜合評(píng)價(jià)分析法、因素分析法、矩陣關(guān)聯(lián)分析法等。高級(jí)的分析方法有:相關(guān)分析法、回歸分析法、聚類(lèi)分析法、判別分析法、主成分分析法、因子分析法、對(duì)應(yīng)分析法、時(shí)間序列等。

4、懂工具。指掌握數(shù)據(jù)分析相關(guān)的常用工具。數(shù)據(jù)分析方法是理論,而數(shù)據(jù)分析工具就是實(shí)現(xiàn)數(shù)據(jù)分析方法理論的工具,面對(duì)越來(lái)越龐大的數(shù)據(jù),我們不能依靠計(jì)算器進(jìn)行分析,必須依靠強(qiáng)大的數(shù)據(jù)分析工具幫我們完成數(shù)據(jù)分析工作。

5、懂設(shè)計(jì)。懂設(shè)計(jì)是指運(yùn)用圖表有效表達(dá)數(shù)據(jù)分析師的分析觀點(diǎn),使分析結(jié)果一目了然。圖表的設(shè)計(jì)是門(mén)大學(xué)問(wèn),如圖形的選擇、版式的設(shè)計(jì)、顏色的搭配等等,都需要掌握一定的設(shè)計(jì)原則。

四、從菜鳥(niǎo)成為數(shù)據(jù)科學(xué)家的 9步養(yǎng)成方案

首先,各個(gè)公司對(duì)數(shù)據(jù)科學(xué)家的定義各不相同,當(dāng)前還沒(méi)有統(tǒng)一的定義。但在一般情況下,一個(gè)數(shù)據(jù)科學(xué)家結(jié)合了軟件工程師與統(tǒng)計(jì)學(xué)家的技能,并且在他或者她希望工作的領(lǐng)域投入了大量行業(yè)知識(shí)。

大約90%的數(shù)據(jù)科學(xué)家至少有大學(xué)教育經(jīng)歷,甚至到博士以及獲得博士學(xué)位,當(dāng)然,他們獲得的學(xué)位的領(lǐng)域非常廣泛。一些招聘者甚至發(fā)現(xiàn)人文專(zhuān)業(yè)的人們有所需的創(chuàng)造力,他們能教別人一些關(guān)鍵技能。

因此,排除一個(gè)數(shù)據(jù)科學(xué)的學(xué)位計(jì)劃(世界各地的著名大學(xué)雨后春筍般的出現(xiàn)著),你需要采取什么措施,成為一個(gè)數(shù)據(jù)科學(xué)家?

  1. 復(fù)習(xí)你的數(shù)學(xué)和統(tǒng)計(jì)技能。

    一個(gè)好的數(shù)據(jù)科學(xué)家必須能夠理解數(shù)據(jù)告訴你的內(nèi)容,做到這一點(diǎn),你必須有扎實(shí)的基本線(xiàn)性代數(shù),對(duì)算法和統(tǒng)計(jì)技能的理解。在某些特定場(chǎng)合可能需要高等數(shù)學(xué),但這是一個(gè)好的開(kāi)始場(chǎng)合。

  2. 了解機(jī)器學(xué)習(xí)的概念。

    機(jī)器學(xué)習(xí)是下一個(gè)新興詞,卻和大數(shù)據(jù)有著千絲萬(wàn)縷的聯(lián)系。機(jī)器學(xué)習(xí)使用人工智能算法將數(shù)據(jù)轉(zhuǎn)化為價(jià)值,并且無(wú)需顯式編程。

  3. 學(xué)習(xí)代碼。

    數(shù)據(jù)科學(xué)家必須知道如何調(diào)整代碼,以便告訴計(jì)算機(jī)如何分析數(shù)據(jù)。從一個(gè)開(kāi)放源碼的語(yǔ)言如Python那里開(kāi)始吧。

  4. 了解數(shù)據(jù)庫(kù)、數(shù)據(jù)池及分布式存儲(chǔ)。

    數(shù)據(jù)存儲(chǔ)在數(shù)據(jù)庫(kù)、數(shù)據(jù)池或整個(gè)分布式網(wǎng)絡(luò)中。以及如何建設(shè)這些數(shù)據(jù)的存儲(chǔ)庫(kù)取決于你如何訪(fǎng)問(wèn)、使用、并分析這些數(shù)據(jù)。如果當(dāng)你建設(shè)你的數(shù)據(jù)存儲(chǔ)時(shí)沒(méi)有整體架構(gòu)或者超前規(guī)劃,那后續(xù)對(duì)你的影響將十分深遠(yuǎn)。

  5. 學(xué)習(xí)數(shù)據(jù)修改和數(shù)據(jù)清洗技術(shù)。

    數(shù)據(jù)修改是將原始數(shù)據(jù)到另一種更容易訪(fǎng)問(wèn)和分析的格式。數(shù)據(jù)清理有助于消除重復(fù)和“壞”數(shù)據(jù)。兩者都是數(shù)據(jù)科學(xué)家工具箱中的必備工具。

  6. 了解良好的數(shù)據(jù)可視化和報(bào)告的基本知識(shí)。

    你不必成為一個(gè)平面設(shè)計(jì)師,但你確實(shí)需要深諳如何創(chuàng)建數(shù)據(jù)報(bào)告,便于外行的人比如你的經(jīng)理或CEO可以理解。

  7. 添加更多的工具到您的工具箱。

    一旦你掌握了以上技巧,是時(shí)候擴(kuò)大你的數(shù)據(jù)科學(xué)工具箱了,包括Hadoop、R語(yǔ)言和Spark。這些工具的使用經(jīng)驗(yàn)和知識(shí)將讓你處于大量數(shù)據(jù)科學(xué)求職者之上。

  8. 練習(xí)。

    在你在新的領(lǐng)域有一個(gè)工作之前,你如何練習(xí)成為數(shù)據(jù)科學(xué)家?使用開(kāi)源代碼開(kāi)發(fā)一個(gè)你喜歡的項(xiàng)目、參加比賽、成為網(wǎng)絡(luò)工作數(shù)據(jù)科學(xué)家、參加訓(xùn)練營(yíng)、志愿者或?qū)嵙?xí)生。最好的數(shù)據(jù)科學(xué)家在數(shù)據(jù)領(lǐng)域?qū)碛薪?jīng)驗(yàn)和直覺(jué),能夠展示自己的作品,以成為應(yīng)聘者。

  9. 成為社區(qū)的一員。

    跟著同行業(yè)中的思想領(lǐng)袖,閱讀行業(yè)博客和網(wǎng)站,參與,提出問(wèn)題,并隨時(shí)了解時(shí)事新聞和理論。

    本站是提供個(gè)人知識(shí)管理的網(wǎng)絡(luò)存儲(chǔ)空間,所有內(nèi)容均由用戶(hù)發(fā)布,不代表本站觀點(diǎn)。請(qǐng)注意甄別內(nèi)容中的聯(lián)系方式、誘導(dǎo)購(gòu)買(mǎi)等信息,謹(jǐn)防詐騙。如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊一鍵舉報(bào)。
    轉(zhuǎn)藏 分享 獻(xiàn)花(0

    0條評(píng)論

    發(fā)表

    請(qǐng)遵守用戶(hù) 評(píng)論公約

    類(lèi)似文章 更多