小男孩‘自慰网亚洲一区二区,亚洲一级在线播放毛片,亚洲中文字幕av每天更新,黄aⅴ永久免费无码,91成人午夜在线精品,色网站免费在线观看,亚洲欧洲wwwww在线观看

分享

少年們快快Get——高考圓錐曲線

 handsome4kgd 2016-04-24


圓錐曲線包括橢圓,雙曲線,拋物線。其統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線。當0<><1時為橢圓:當e=1時為拋物線;當e>1時為雙曲線。

一、圓錐曲線的方程和性質(zhì):

1)橢圓

文字語言定義:平面內(nèi)一個動點到一個定點與一條定直線的距離之比是一個小于1的正常數(shù)e。定點是橢圓的焦點,定直線是橢圓的準線,常數(shù)e是橢圓的離心率。

標準方程

1.中心在原點,焦點在x軸上的橢圓標準方程:(x^2/a^2)+(y^2/b^2)=1

其中a>b>0,c>0,c^2=a^2-b^2.

2.中心在原點,焦點在y軸上的橢圓標準方程:(x^2/b^2)+(y^2/a^2)=1

其中a>b>0,c>0,c^2=a^2-b^2.

參數(shù)方程:

X=acosθY=bsinθ(θ為參數(shù),設橫坐標為acosθ,是由于圓錐曲線的考慮,橢圓伸縮變換后可為圓此時c=0,圓的acosθ=r)

2)雙曲線

文字語言定義:平面內(nèi)一個動點到一個定點與一條定直線的距離之比是一個大于1的常數(shù)e。定點是雙曲線的焦點,定直線是雙曲線的準線,常數(shù)e是雙曲線的離心率。

標準方程:

1.中心在原點,焦點在x軸上的雙曲線標準方程:(x^2/a^2)-(y^2/b^2)=1

其中a>0,b>0,c^2=a^2+b^2.

2.中心在原點,焦點在y軸上的雙曲線標準方程:(y^2/a^2)-(x^2/b^2)=1.

其中a>0,b>0,c^2=a^2+b^2.

參數(shù)方程

x=asecθy=btanθ(θ為參數(shù))

3)拋物線

標準方程

1.頂點在原點,焦點在x軸上開口向右的拋物線標準方程:y^2=2px其中p>0

2.頂點在原點,焦點在x軸上開口向左的拋物線標準方程:y^2=-2px其中p>0

3.頂點在原點,焦點在y軸上開口向上的拋物線標準方程:x^2=2py其中p>0

4.頂點在原點,焦點在y軸上開口向下的拋物線標準方程:x^2=-2py其中p>0

參數(shù)方程

x=2pt^2y=2pt(t為參數(shù))t=1/tanθ(tanθ為曲線上點與坐標原點確定直線的斜率)特別地,t可等于0

直角坐標

y=ax^2+bx+c(開口方向為y軸,a<>0)x=ay^2+by+c(開口方向為x軸,a<>0)

圓錐曲線(二次非圓曲線)的統(tǒng)一極坐標方程為

ρ=ep/(1-e×cosθ)其中e表示離心率,p為焦點到準線的距離。

二、焦半徑

圓錐曲線上任意一點到焦點的距離稱為焦半徑。

圓錐曲線左右焦點為F1、F2,其上任意一點為P(x,y),則焦半徑為:

橢圓|PF1|=a+ex|PF2|=a-ex

雙曲線P在左支,|PF1|=-a-ex|PF2|=a-ex

P在右支,|PF1|=a+ex|PF2|=-a+ex

P在下支,|PF1|=-a-ey|PF2|=a-ey

P在上支,|PF1|=a+ey|PF2|=-a+ey

拋物線|PF|=x+p/2

三、圓錐曲線的切線方程

圓錐曲線上一點P(x0,y0)的切線方程

以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y

即橢圓:x0x/a^2+y0y/b^2=1;

雙曲線:x0x/a^2-y0y/b^2=1;

拋物線:y0y=p(x0+x)

四、焦準距

圓錐曲線的焦點到準線的距離p叫圓錐曲線的焦準距,或焦參數(shù)。

橢圓的焦準距:p=(b^2)/c

雙曲線的焦準距:p=(b^2)/c

拋物線的準焦距:p

五、通徑

圓錐曲線中,過焦點并垂直于軸的弦成為通徑。

橢圓的通徑:(2b^2)/a

雙曲線的通徑:(2b^2)/a

拋物線的通徑:2p

六、圓錐曲線的性質(zhì)對比


七、圓錐曲線的中點弦問題

已知圓錐曲線內(nèi)一點為圓錐曲線的一弦中點,求該弦的方程

⒈聯(lián)立方程法。

用點斜式設出該弦的方程(斜率不存在的情況需要另外考慮),與圓錐曲線方程聯(lián)立求得關于x的一元二次方程和關于y的一元二次方程,由韋達定理得到兩根之和的表達式,在由中點坐標公式的兩根之和的具體數(shù)值,求出該弦的方程。

2.點差法,或稱代點相減法。

設出弦的兩端點坐標(x1,y1)和(x2,y2),代入圓錐曲線的方程,將得到的兩個方程相減,運用平方差公式得[(x1+x2)·(x1-x2)]/(a^2)+[(y1+y2)·(y1-y2)/(b^2]=0由斜率為(y1-y2)/(x1-x2)可以得到斜率的取值。(使用時注意判別式的問題)

    本站是提供個人知識管理的網(wǎng)絡存儲空間,所有內(nèi)容均由用戶發(fā)布,不代表本站觀點。請注意甄別內(nèi)容中的聯(lián)系方式、誘導購買等信息,謹防詐騙。如發(fā)現(xiàn)有害或侵權內(nèi)容,請點擊一鍵舉報。
    轉(zhuǎn)藏 分享 獻花(0

    0條評論

    發(fā)表

    請遵守用戶 評論公約

    類似文章 更多