一、周期函數(shù) 1、周期函數(shù)的定義: 對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個值時,都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù).T叫做這個函數(shù)的周期. 2、最小正周期: 如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期. 典型例題1: 1、求三角函數(shù)定義域?qū)嶋H上是解簡單的三角不等式,常借助三角函數(shù)線或三角函數(shù)圖象來求解. 2、求解涉及三角函數(shù)的值域(最值)的題目一般常用以下方法: (1)、利用sin x、cos x的值域; (2)、形式復(fù)雜的函數(shù)應(yīng)化為y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范圍,根據(jù)正弦函數(shù)單調(diào)性寫出函數(shù)的值域(如本例以題試法(2)); (3)換元法:把sin x或cos x看作一個整體,可化為求函數(shù)在給定區(qū)間上的值域(最值)問題(如例1(2)). 二、正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖象和性質(zhì) 典型例題2: 1、求三角函數(shù)的單調(diào)區(qū)間時,應(yīng)先把函數(shù)式化成y=Asin(ωx+φ)(ω>0)的形式,再根據(jù)三角函數(shù)的單調(diào)區(qū)間,求出x所在的區(qū)間.應(yīng)特別注意,考慮問題應(yīng)在函數(shù)的定義域內(nèi). 2、周期性是函數(shù)的整體性質(zhì),要求對于函數(shù)整個定義域內(nèi)的每一個x值都滿足f(x+T)=f(x),其中T是不為零的常數(shù).如果只有個別的x值滿足f(x+T)=f(x),或找到哪怕只有一個x值不滿足f(x+T)=f(x),都不能說T是函數(shù)f(x)的周期. 典型例題3: 1、三角函數(shù)的奇偶性的判斷技巧 首先要對函數(shù)的解析式進(jìn)行恒等變換,再根據(jù)定義、誘導(dǎo)公式去判斷所求三角函數(shù)的奇偶性;也可以根據(jù)圖象做判斷. 2、求三角函數(shù)周期的方法 (1)、利用周期函數(shù)的定義; (2)、利用公式:y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為|ω|(2π),y=tan(ωx+φ)的最小正周期為|ω|(π); (3)、利用圖象. 三、求三角函數(shù)的單調(diào)區(qū)間時應(yīng)注意以下幾點: 典型例題4: 正、余弦函數(shù)的圖象既是中心對稱圖形,又是軸對稱圖形.正切函數(shù)的圖象只是中心對稱圖形,應(yīng)熟記它們的對稱軸和對稱中心,并注意數(shù)形結(jié)合思想的應(yīng)用. 【作者:吳國平】 |
|