圓錐曲線方程及性質(zhì) 橢圓、雙曲線、拋物線的定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)及其應(yīng)用
二. 課標(biāo)要求: 1. 了解圓錐曲線的實(shí)際背景,感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用; 2. 經(jīng)歷從具體情境中抽象出橢圓、雙曲線模型的過程,掌握它們的定義、標(biāo)準(zhǔn)方程、幾何圖形及簡單性質(zhì); 3. 了解拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道拋物線的有關(guān)性質(zhì)。
三. 命題走向: 本講內(nèi)容是圓錐曲線的基礎(chǔ)內(nèi)容,也是高考重點(diǎn)考查的內(nèi)容,在每年的高考試卷中一般有2~3道客觀題,難度上易、中、難三檔題都有,主要考查的內(nèi)容是圓錐曲線的概念和性質(zhì),從近十年高考試題看主要考查圓錐曲線的概念和性質(zhì)。圓錐曲線在高考試題中占有穩(wěn)定的較大的比例,且選擇題、填空題和解答題都涉及到,客觀題主要考查圓錐曲線的基本概念、標(biāo)準(zhǔn)方程及幾何性質(zhì)等基礎(chǔ)知識(shí)和處理有關(guān)問題的基本技能、基本方法。
【教學(xué)過程】 基本知識(shí)要點(diǎn)回顧: 1. 橢圓 (1)橢圓概念 平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。 橢圓的標(biāo)準(zhǔn)方程為:()(焦點(diǎn)在x軸上)或()(焦點(diǎn)在y軸上)。 注:①以上方程中的大小,其中; ②在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。例如橢圓(,,)當(dāng)時(shí)表示焦點(diǎn)在軸上的橢圓;當(dāng)時(shí)表示焦點(diǎn)在軸上的橢圓。 (2)橢圓的性質(zhì) ①范圍:由標(biāo)準(zhǔn)方程知,,說明橢圓位于直線,所圍成的矩形里; ②對稱性:在曲線方程里,若以代替方程不變,所以若點(diǎn)在曲線上時(shí),點(diǎn)也在曲線上,所以曲線關(guān)于軸對稱,同理,以代替方程不變,則曲線關(guān)于軸對稱。若同時(shí)以代替,代替方程也不變,則曲線關(guān)于原點(diǎn)對稱。 所以,橢圓關(guān)于軸、軸和原點(diǎn)對稱。這時(shí),坐標(biāo)軸是橢圓的對稱軸,原點(diǎn)是對稱中心,橢圓的對稱中心叫橢圓的中心; ③頂點(diǎn):確定曲線在坐標(biāo)系中的位置,常需要求出曲線與軸、軸的交點(diǎn)坐標(biāo)。在橢圓的標(biāo)準(zhǔn)方程中,令,得,則,是橢圓與軸的兩個(gè)交點(diǎn)。同理令得,即,是橢圓與軸的兩個(gè)交點(diǎn)。 所以,橢圓與坐標(biāo)軸的交點(diǎn)有四個(gè),這四個(gè)交點(diǎn)叫做橢圓的頂點(diǎn)。 同時(shí),線段、分別叫做橢圓的長軸和短軸,它們的長分別為和,和分別叫做橢圓的長半軸長和短半軸長。 由橢圓的對稱性知:橢圓的短軸端點(diǎn)到焦點(diǎn)的距離為;在中,,,,且,即; ④離心率:橢圓的焦距與長軸的比叫橢圓的離心率?!?/span>,∴,且越接近,就越接近,從而就越小,對應(yīng)的橢圓越扁;反之,越接近于,就越接近于,從而越接近于,這時(shí)橢圓越接近于圓。當(dāng)且僅當(dāng)時(shí),,兩焦點(diǎn)重合,圖形變?yōu)閳A,方程為。 2. 雙曲線 (1)雙曲線的概念 平面上與兩點(diǎn)距離的差的絕對值為非零常數(shù)的動(dòng)點(diǎn)軌跡是雙曲線()*。 注意:①(*)式中是差的絕對值,在條件下;時(shí)為雙曲線的一支(含的一支);時(shí)為雙曲線的另一支(含的一支);②當(dāng)時(shí),表示兩條射線;③當(dāng)時(shí),不表示任何圖形;④兩定點(diǎn)叫做雙曲線的焦點(diǎn),叫做焦距。 橢圓和雙曲線比較:
(2)雙曲線的性質(zhì) ①范圍:從標(biāo)準(zhǔn)方程,看出曲線在坐標(biāo)系中的范圍:雙曲線在兩條直線的外側(cè)。即,即雙曲線在兩條直線的外側(cè)。 ②對稱性:雙曲線關(guān)于每個(gè)坐標(biāo)軸和原點(diǎn)都是對稱的,這時(shí),坐標(biāo)軸是雙曲線的對稱軸,原點(diǎn)是雙曲線的對稱中心,雙曲線的對稱中心叫做雙曲線的中心。 ③頂點(diǎn):雙曲線和對稱軸的交點(diǎn)叫做雙曲線的頂點(diǎn)。在雙曲線的方程里,對稱軸是軸,所以令得,因此雙曲線和軸有兩個(gè)交點(diǎn),它們是雙曲線的頂點(diǎn)。 令,沒有實(shí)根,因此雙曲線和y軸沒有交點(diǎn)。 <1>注意:雙曲線的頂點(diǎn)只有兩個(gè),這是與橢圓不同的(橢圓有四個(gè)頂點(diǎn)),雙曲線的頂點(diǎn)分別是實(shí)軸的兩個(gè)端點(diǎn)。 <2>實(shí)軸:線段叫做雙曲線的實(shí)軸,它的長等于叫做雙曲線的實(shí)半軸長。虛軸:線段叫做雙曲線的虛軸,它的長等于叫做雙曲線的虛半軸長。 ④漸近線:注意到所畫的矩形,矩形確定了兩條對角線,這兩條直線即稱為雙曲線的漸近線。從圖上看,雙曲線的各支向外延伸時(shí),與這兩條直線逐漸接近。 ⑤等軸雙曲線: <1>定義:實(shí)軸和虛軸等長的雙曲線叫做等軸雙曲線。定義式:; <2>等軸雙曲線的性質(zhì):(1)漸近線方程為:;(2)漸近線互相垂直。 注意以上幾個(gè)性質(zhì)與定義式彼此等價(jià)。亦即若題目中出現(xiàn)上述其一,即可推知雙曲線為等軸雙曲線,同時(shí)其他幾個(gè)亦成立。 <3>注意到等軸雙曲線的特征,則等軸雙曲線可以設(shè)為:,當(dāng)時(shí)交點(diǎn)在軸,當(dāng)時(shí)焦點(diǎn)在軸上。 ⑥注意與的區(qū)別:三個(gè)量中不同(互換)相同,還有焦點(diǎn)所在的坐標(biāo)軸也變了。 3. 拋物線 (1)拋物線的概念 平面內(nèi)與一定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線(定點(diǎn)F不在定直線l上)。定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線。 方程叫做拋物線的標(biāo)準(zhǔn)方程。 注意:它表示的拋物線的焦點(diǎn)在x軸的正半軸上,焦點(diǎn)坐標(biāo)是F(,0),它的準(zhǔn)線方程是; (2)拋物線的性質(zhì) 一條拋物線,由于它在坐標(biāo)系的位置不同,方程也不同,有四種不同的情況,所以拋物線的標(biāo)準(zhǔn)方程還有其他幾種形式:,,.這四種拋物線的圖形、標(biāo)準(zhǔn)方程、焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程如下表:
說明:(1)通徑:過拋物線的焦點(diǎn)且垂直于對稱軸的弦稱為通徑;(2)拋物線的幾何性質(zhì)的特點(diǎn):有一個(gè)頂點(diǎn),一個(gè)焦點(diǎn),一條準(zhǔn)線,一條對稱軸,無對稱中心,沒有漸近線;(3)注意強(qiáng)調(diào)的幾何意義:是焦點(diǎn)到準(zhǔn)線的距離。
【典型例題】 例1. 求適合下列條件的橢圓的標(biāo)準(zhǔn)方程: (1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是、,橢圓上一點(diǎn)到兩焦點(diǎn)距離的和等于; (2)兩個(gè)焦點(diǎn)的坐標(biāo)分別是、,并且橢圓經(jīng)過點(diǎn); (3)焦點(diǎn)在軸上,,; (4)焦點(diǎn)在軸上,,且過點(diǎn); (5)焦距為,; (6)橢圓經(jīng)過兩點(diǎn),。 解:(1)∵橢圓的焦點(diǎn)在軸上,故設(shè)橢圓的標(biāo)準(zhǔn)方程為(), ∵,,∴, 所以,橢圓的標(biāo)準(zhǔn)方程為。 (2)∵橢圓焦點(diǎn)在軸上,故設(shè)橢圓的標(biāo)準(zhǔn)方程為(), 由橢圓的定義知, , ∴,又∵,∴, 所以,橢圓的標(biāo)準(zhǔn)方程為。 (3)∵,∴,① 又由代入①得, ∴,∴,又∵焦點(diǎn)在軸上, 所以,橢圓的標(biāo)準(zhǔn)方程為。 (4)設(shè)橢圓方程為, ∴,∴, 又∵,∴, 所以,橢圓的標(biāo)準(zhǔn)方程為。 (5)∵焦距為,∴, ∴,又∵,∴,, 所以,橢圓的標(biāo)準(zhǔn)方程為或。 (6)設(shè)橢圓方程為(), 由得, 所以,橢圓方程為。 點(diǎn)評:求橢圓的方程首先清楚橢圓的定義,還要知道橢圓中一些幾何要素與橢圓方程間的關(guān)系。
例2. (06山東)已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為F(-2,0),且長軸長是短軸長的2倍,則該橢圓的標(biāo)準(zhǔn)方程是 。 解:已知為所求; 點(diǎn)評:求橢圓方程的題目屬于中低檔題目,掌握好基礎(chǔ)知識(shí)就可以。
例3. (1998全國理,2)橢圓=1的焦點(diǎn)為F1和F2,點(diǎn)P在橢圓上.如果線段PF1的中點(diǎn)在y軸上,那么|PF1|是|PF2|的( ) A. 7倍 B. 5倍 C. 4倍 D. 3倍 解:不妨設(shè)F1(-3,0),F2(3,0)由條件得P(3,±),即|PF2|=,|PF1|=,因此|PF1|=7|PF2|,故選A。 點(diǎn)評:本題主要考查橢圓的定義及數(shù)形結(jié)合思想,具有較強(qiáng)的思辨性,是高考命題的方向。
例4. (1)已知焦點(diǎn),雙曲線上的一點(diǎn)到的距離差的絕對值等于,求雙曲線的標(biāo)準(zhǔn)方程; (2)求與橢圓共焦點(diǎn)且過點(diǎn)的雙曲線的方程; (3)已知雙曲線的焦點(diǎn)在軸上,并且雙曲線上兩點(diǎn)坐標(biāo)分別為,求雙曲線的標(biāo)準(zhǔn)方程。 解:(1)因?yàn)殡p曲線的焦點(diǎn)在軸上,所以設(shè)它的標(biāo)準(zhǔn)方程為, ∵,∴,∴。 所以所求雙曲線的方程為; (2)橢圓的焦點(diǎn)為,可以設(shè)雙曲線的方程為,則。 又∵過點(diǎn),∴。 綜上得,,所以。 點(diǎn)評:雙曲線的定義;方程確定焦點(diǎn)的方法;基本量之間的關(guān)系。 (3)因?yàn)殡p曲線的焦點(diǎn)在軸上,所以設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為①;∵點(diǎn)在雙曲線上,∴點(diǎn)的坐標(biāo)適合方程①。 將分別代入方程①中,得方程組: 將和看作整體,解得,∴即雙曲線的標(biāo)準(zhǔn)方程為。 點(diǎn)評:本題只要解得即可得到雙曲線的方程,沒有必要求出的值;在求解的過程中也可以用換元思想,可能會(huì)看的更清楚。
例5. (06上海卷)已知雙曲線中心在原點(diǎn),一個(gè)頂點(diǎn)的坐標(biāo)為,且焦距與虛軸長之比為,則雙曲線的標(biāo)準(zhǔn)方程是____________________. 解:雙曲線中心在原點(diǎn),一個(gè)頂點(diǎn)的坐標(biāo)為,則焦點(diǎn)在x軸上,且a=3,焦距與虛軸長之比為,即,解得,則雙曲線的標(biāo)準(zhǔn)方程是; 點(diǎn)評:本題主要考查雙曲線的基礎(chǔ)知識(shí)以及綜合運(yùn)用知識(shí)解決問題的能力。充分挖掘雙曲線幾何性質(zhì),數(shù)形結(jié)合,更為直觀簡捷。
例6. (1)(06福建卷)已知雙曲線(a>0,b>0)的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為60°的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則此雙曲線離心率的取值范圍是( ) A. (-1,2) B. (1,2) C. [2,+∞] D. (2,+∞) (2)(06湖南卷)過雙曲線M:的左頂點(diǎn)A作斜率為1的直線,若與雙曲線M的兩條漸近線分別相交于B、C,且|AB|=|BC|,則雙曲線M的離心率是( ) A. B. C. D. (3)(06陜西卷)已知雙曲線-=1(a>)的兩條漸近線的夾角為,則雙曲線的離心率為( ) A. 2 B. C. D. 解:(1)雙曲線的右焦點(diǎn)為F,若過點(diǎn)F且傾斜角為的直線與雙曲線的右支有且只有一個(gè)交點(diǎn),則該直線的斜率的絕對值小于等于漸近線的斜率, ∴ ≥,離心率e2=,∴ e≥2,選C。 (2)過雙曲線的左頂點(diǎn)(1,0)作斜率為1的直線:y=x-1,若與雙曲線的兩條漸近線分別相交于點(diǎn),聯(lián)立方程組代入消元得, ∴ ,x1+x2=2x1x2, 又,則B為AC中點(diǎn),2x1=1+x2,代入解得, ∴b2=9,雙曲線的離心率e=,選A。 (3)雙曲線(a>)的兩條漸近線的夾角為,則,∴ a2=6,雙曲線的離心率為,選D。 點(diǎn)評:高考題以離心率為考查點(diǎn)的題目較多,主要實(shí)現(xiàn)三元素之間的關(guān)系。
例7. (1)(06江西卷)P是雙曲線的右支上一點(diǎn),M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點(diǎn),則|PM|-|PN|的最大值為( ) A. 6 B. 7 C. 8 D. 9 (2)(06全國卷I)雙曲線的虛軸長是實(shí)軸長的2倍,則 A. B. C. D. 解:(1)設(shè)雙曲線的兩個(gè)焦點(diǎn)分別是F1(-5,0)與F2(5,0),則這兩點(diǎn)正好是兩圓的圓心,當(dāng)且僅當(dāng)點(diǎn)P與M、F1三點(diǎn)共線以及P與N、F2三點(diǎn)共線時(shí)所求的值最大,此時(shí)|PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故選D。 (2)雙曲線的虛軸長是實(shí)軸長的2倍,∴ m<0,且雙曲線方程為,∴ m=,選A。 點(diǎn)評:關(guān)于雙曲線漸近線、許多距離問題也是考查的重點(diǎn)。
例8. (1)焦點(diǎn)到準(zhǔn)線的距離是2; (2)已知拋物線的焦點(diǎn)坐標(biāo)是F(0,2),求它的標(biāo)準(zhǔn)方程。 解:(1)y=4x,y=4x,x=4y,x=4y;
方程是x=8y。 點(diǎn)評:由于拋物線的標(biāo)準(zhǔn)方程有四種形式,且每一種形式中都只含一個(gè)系數(shù)p,因此只要給出確定p的一個(gè)條件,就可以求出拋物線的標(biāo)準(zhǔn)方程。當(dāng)拋物線的焦點(diǎn)坐標(biāo)或準(zhǔn)線方程給定以后,它的標(biāo)準(zhǔn)方程就唯一確定了;若拋物線的焦點(diǎn)坐標(biāo)或準(zhǔn)線方程沒有給定,則所求的標(biāo)準(zhǔn)方程就會(huì)有多解。
例9. (1)(06安徽卷)若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為( ) A. B. C. D. (2)(浙江卷)拋物線的準(zhǔn)線方程是( ) (A) (B) (C) (D) (3)(06上海春)拋物線的焦點(diǎn)坐標(biāo)為( ) (A) (B) (C) (D) 解:(1)橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D; (2)2p=8,p=4,故準(zhǔn)線方程為x=-2,選A; (3)(直接計(jì)算法)因?yàn)?/span>p=2,所以拋物線y2=4x的焦點(diǎn)坐標(biāo)為 。應(yīng)選B。 點(diǎn)評:考查拋物線幾何要素如焦點(diǎn)坐標(biāo)、準(zhǔn)線方程的題目根據(jù)定義直接計(jì)算即可。
例10. (1)(全國卷I)拋物線上的點(diǎn)到直線距離的最小值是( ) A. B. C. D. (2)(2002全國文,16)對于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件: ①焦點(diǎn)在y軸上; ②焦點(diǎn)在x軸上; ③拋物線上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6; ④拋物線的通徑的長為5; ⑤由原點(diǎn)向過焦點(diǎn)的某條直線作垂線,垂足坐標(biāo)為(2,1)。能使這拋物線方程為y2=10x的條件是 . (要求填寫合適條件的序號(hào)) (3)(2001廣東、河南,10)對于拋物線y2=4x上任意一點(diǎn)Q,點(diǎn)P(a,0)都滿足|PQ|≥|a|,則a的取值范圍是( ) A. (-∞,0) B. (-∞,2 C. [0,2] D. (0,2) 解:(1)設(shè)拋物線上一點(diǎn)為(m,-m2),該點(diǎn)到直線的距離為,當(dāng)m=時(shí),取得最小值為,選A (2)從拋物線方程易得②,分別按條件③、④、⑤計(jì)算求拋物線方程,從而確定⑤。 (3)設(shè)點(diǎn)Q的坐標(biāo)為(,y0), 由|PQ|≥|a|,得y02+(-a)2≥a2. 整理,得:y02(y02+16-8a)≥0, ∵y02≥0,∴y02+16-8a≥0. 即a≤2+恒成立.而2+的最小值為2. ∴a≤2.選B。 點(diǎn)評:拋物線問題多考查一些距離、最值及范圍問題。
例11. (1)(07重慶文)已知以F1(2,0),F2(2,0)為焦點(diǎn)的橢圓與直線有且僅有一個(gè)交點(diǎn),則橢圓的長軸長為 A. B. C. D. (2)(07四川文)已知拋物線y=x2+3上存在關(guān)于直線x+y=0對稱的相異兩點(diǎn)A、B,則|AB|等于 A. 3 B. 4 C. 3 D. 4 解:(1)由直線與圓錐曲線相切△=0得關(guān)于a的方程,求得a=,故選C (2)設(shè)直線的方程為,由,進(jìn)而可求出的中點(diǎn),又由在直線上可求出,∴,由弦長公式可求出。選C。 點(diǎn)評:(1)和(2)題都考查了直線與圓錐曲線的位置關(guān)系。
[思維小結(jié)] 在復(fù)習(xí)過程中抓住以下幾點(diǎn): (1)堅(jiān)持源于課本、高于課本,以考綱為綱的原則。高考命題的依據(jù)是《高考說明》。并明確考點(diǎn)及對知識(shí)點(diǎn)與能力的要求,其實(shí)質(zhì)是精通課本,而本章考題大多數(shù)是課本的變式題,即源于課本,因此掌握雙基、精通課本是關(guān)鍵; (2)在注重解題方法、數(shù)學(xué)思想的應(yīng)用的同時(shí)注意一些解題技巧,橢圓、雙曲線、拋物線的定義揭示了各自存在的條件、性質(zhì)及幾何特征與圓錐曲線的焦點(diǎn)、焦半徑、準(zhǔn)線、離心率有關(guān)量的關(guān)系問題,若能用定義法,可避免繁瑣的推理與運(yùn)算; (3)焦半徑公式:拋物線上一點(diǎn)P(x1,y1),F為拋物線的焦點(diǎn),對于四種拋物線的焦半徑公式分別為(p>0):
【模擬試題】 一、選擇題 1. 已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為,則到另一焦點(diǎn)距離為( ) A. B. C. D. 2. 若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長的和為,焦距為,則橢圓的方程為( ) A. B. C或 D. 以上都不對 3. 動(dòng)點(diǎn)到點(diǎn)及點(diǎn)的距離之差為,則點(diǎn)的軌跡是( ) A. 雙曲線 B. 雙曲線的一支 C. 兩條射線 D. 一條射線 4. 設(shè)雙曲線的半焦距為,兩條準(zhǔn)線間的距離為,且,那么雙曲線的離心率等于( ) A. 2 B. 3 C. D. 5. 拋物線的焦點(diǎn)到準(zhǔn)線的距離是( ) A. B. C. D. 6. 若拋物線上一點(diǎn)到其焦點(diǎn)的距離為,則點(diǎn)的坐標(biāo)為( )。 A. B. C. D. 7. (07江蘇理)在平面直角坐標(biāo)系中,雙曲線中心在原點(diǎn),焦點(diǎn)在軸上,一條漸近線方程為,則它的離心率為 A. B. C. D. 8. (07福建理)以雙曲線的右焦點(diǎn)為圓心,且與其漸近線相切的圓的方程是( ) A. B. C. D. 9. 連接拋物線的焦點(diǎn)與點(diǎn)所得的線段與拋物線交于點(diǎn),設(shè)點(diǎn)為坐標(biāo)原點(diǎn),則三角形的面積為( ?。?/span> A. B. C. D. 10. 設(shè)橢圓的離心率為,右焦點(diǎn)為,方程的兩個(gè)實(shí)根分別為和,則點(diǎn)( ?。?/span> A. 必在圓上 B. 必在圓外 C. 必在圓內(nèi) D. 以上三種情形都有可能
二、填空題 1、若橢圓的離心率為,則它的長半軸長為______________。 2、雙曲線的漸近線方程為,焦距為,這雙曲線的方程為_____________。 3、若曲線表示雙曲線,則的取值范圍是 。 4、拋物線的準(zhǔn)線方程為___________。 5、橢圓的一個(gè)焦點(diǎn)是,那么 。 6、(07江蘇理)在平面直角坐標(biāo)系中,已知頂點(diǎn)和,頂點(diǎn)在橢圓上,則 。
三、解答題 1. 為何值時(shí),直線和曲線有兩個(gè)公共點(diǎn)?有一個(gè)公共點(diǎn)?沒有公共點(diǎn)? 2. 在拋物線上求一點(diǎn),使這點(diǎn)到直線的距離最短。 3. 雙曲線與橢圓有共同的焦點(diǎn),點(diǎn)是雙曲線的漸近線與橢圓的一個(gè)交點(diǎn),求漸近線與橢圓的方程。 4. 若動(dòng)點(diǎn)在曲線上變化,則的最大值為多少?
【試題答案】 一、選擇題 1、D 點(diǎn)到橢圓的兩個(gè)焦點(diǎn)的距離之和為 2、C 得,或 3、D ,在線段的延長線上 4、C 5、B ,而焦點(diǎn)到準(zhǔn)線的距離是 6、C 點(diǎn)到其焦點(diǎn)的距離等于點(diǎn)到其準(zhǔn)線的距離,得 7、A 8、A 9、B 10、C
二、填空題 1、 當(dāng)時(shí),; 當(dāng)時(shí), 2、 設(shè)雙曲線的方程為,焦距 當(dāng)時(shí),; 當(dāng)時(shí), 3、 4、 5、 焦點(diǎn)在軸上,則 6、橢圓的定義和正弦定理的應(yīng)用
三、解答題 1、解:由,得,即
當(dāng),即時(shí),直線和曲線有兩個(gè)公共點(diǎn); 當(dāng),即時(shí),直線和曲線有一個(gè)公共點(diǎn); 當(dāng),即時(shí),直線和曲線沒有公共點(diǎn)。 2、解:設(shè)點(diǎn),距離為, 當(dāng)時(shí),取得最小值,此時(shí)為所求的點(diǎn)。 3、解:由共同的焦點(diǎn),可設(shè)橢圓方程為; 雙曲線方程為,點(diǎn)在橢圓上, 雙曲線過點(diǎn)的漸近線為,即 所以橢圓方程為;雙曲線方程為 4、解:設(shè)點(diǎn), 令,,對稱軸 當(dāng)時(shí),;當(dāng)時(shí),
|
|